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. PROBLEM 1. METHOD

Coherent Errors: unitary errors, usually due to er- Instead of testing all Pauli gates to find the optimal conjugation gate, we wiill
rors in quantum control, e.g. systematic over-/un- only test one Pauli gate in each equivalent class.
der-rotation.

Equivalence Class: a subset of gates within the Pauli gates that have the same
Incoherent Errors: probabilistic errors, usual- conjugation performance when applied to a given noise process for a given
ly due to interactions with the environment, e.qg. guantum error correction code.
dephasing channels.

The Pauli gates are partitioned into different equivalent classes based on:

For the same average error rate, the worst-case . The structure of the quantum error correction code
error rate of coherent errors can be much higher  The structure of the noise process

than the corresponding incoherent error [1]. - The shared symmetries between the code and the noise
Transforming coherent errors into incoherent er- Example Noise Model: global Z rotation exp(:6 Z Z;)

rors via Pauli twirling.
Steane Code: all Pauli gates are divided into two equivalence classes for

PauliTwirling: conjugatingthe error channel with conjugation. One is equivalent to |, the other is equivalent to X, (or any sin-
a pair of random Pauli gates [2]. gle-qubit flip). Here we can ..
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- Large systerm size.
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