
Quantum Error Mitigation for
Sampling Algorithms
Zhenyu Cai, Joint work with Kecheng Liu

1

Ideal
value

Quantum Error Mitigation (QEM)

• Using additional circuit runs to reduce the bias in the expectation
value via post-processing.

Cai et al, Quantum error mitigation, Rev. Mod. Phys. 95, 045005 (2023).

Mitigated
value

Noisy
value

2

Dealing with dangerous errors

Not scalable ≠ Not useful

3arXiv:2501.05694

Applicability of QEM

• Cannot rely on QEM alone to deal with noise in large-scale
computation.

• It is always useful in the finite error regime (average number of errors
per circuit run ≲ 1), extending the computational reach (i.e. allowing
for larger and deeper computation) for noisy devices.

• This is especially relevant in the early fault-tolerant era, with non-
negligible finite logical errors remaining after QEC.

4

Dealing with dangerous errors

Can QEM be applied to sampling-based
algorithms like QPE?

5

QEM for Sampling Algorithm

• QEM use post-processing to combine the output from multiple noisy
circuits to obtain the error-mitigated expectation values.

• The effective damage from noise is only reduced for the entire
ensemble of circuit runs.

• The noise remains unchanged or even increases when zoom
individual circuit runs.

• Sampling algorithms (e.g. quantum phase estimation): rely on
accurate results for every circuit run, thus seems to be inherently
incompatible with QEM (except for those uses post-selection).

6

Error-mitigated State

• QEM can also be viewed as trying to extract the error-mitigated
“states” 𝜌𝑒𝑚 out of the noisy circuit runs.

• The error-mitigated expectation value is given as Tr(𝑂𝜌𝑒𝑚). (𝑂 is
the observable of interests)

• The error-mitigated states 𝜌𝑒𝑚 is obtained via linear combination of
output states from different circuit configurations.

• This covers most mainstream QEM techniques.

7Cai et al, arXiv:2110.05389.

Examples of Error-mitigated States

• Linear Zero-noise extrapolation (can be generalized to Richardson):
𝜌𝑝 = (1 − 𝑝)𝜌0+𝑝𝜌𝑒𝑟𝑟 ⇒ 𝜌0 = 𝜌𝑒𝑚 ∝ 𝑝2𝜌𝑝1

− 𝑝1𝜌𝑝2

• Probabilistic error cancellation for bit-flip noise:
𝜌 = (1 − 𝑝)𝜌0+𝑝𝑋𝜌0𝑋 ⇒ 𝜌0 = 𝜌𝑒𝑚 ∝ (1 − 𝑝)𝜌 − 𝑝𝑋𝜌𝑋

• Also applicable to other major QEM techniques like virtual
purification.

8Cai et al, arXiv:2110.05389.

QEM for Recovering Output Distribution

• Setting: Noiseless circuit gives the ideal output distribution 𝑝0 𝑧 for
binary strings 𝑧, but noise corrupts the output distribution to 𝑝 𝑧 .

• Goal: obtain some error-mitigated distribution 𝑝𝑒𝑚 z .

• Insight 1: The probability of obtaining a given output string 𝑧 is simply
the expectation value of the observable Π𝑧 = |𝑧⟩⟨𝑧|.

• i.e. the ideal and noisy output distributions are
𝑝0 z = Tr Π𝑧𝜌0 , 𝑝 z = Tr Π𝑧𝜌

• The error-mitigated distribution is
𝑝𝑒𝑚 z = Tr Π𝑧𝜌𝑒𝑚

9

QEM for Recovering Output Distribution

• However, there are exponentially many observable Π𝑧!

• Insight 2: by running the circuit and measuring in the computational
basis which output the string 𝑧′ in a given run, we have actually
obtained one sample for all {Π𝑧} with
• one sample of 1 for the Π𝑧 with 𝑧 = 𝑧′

• one sample of 0 for the Π𝑧 with 𝑧 ≠ 𝑧′

10

QEM for Recovering Output Distribution

• Combining the two insights: obtaining error-mitigated distributions
𝑝𝑒𝑚 z = Tr Π𝑧𝜌𝑒𝑚 from error-mitigated states 𝜌𝑒𝑚 is efficient (by
measuring in the computation basis to obtain {Π𝑧}).

• Existing mainstream QEM techniques can be used to extract error-
mitigated “states” 𝜌𝑒𝑚, thus can be straightforwardly extended to
extract error-mitigated distributions.

11

PEC Example

• Probabilistic error cancellation for bit-flip noise:

𝜌 = (1 − 𝑝)𝜌0+𝑝𝑋𝜌0𝑋 ⇒ 𝜌0 = 𝜌𝑒𝑚 =
(1 − 𝑝)𝜌 − 𝑝𝑋𝜌𝑋

1 − 2𝑝

• Implementation:

1. Sample 𝜌 and 𝑋𝜌𝑋 with probability (1 − 𝑝) and 𝑝, respectively.

2. Measure in computation basis {𝑍𝑖}, post-process to obtain the set
of observables {Π𝑧}.

3. If 𝑋𝜌𝑋 is sampled, attach minus sign to the output.

4. 𝑝𝑒𝑚 z is estimated by taking the average over all samples of Π𝑧
and renormalise the result with the 1 − 2𝑝 −1 factor.

12

QEM for Recovering Output Distribution

Given the error-mitigated state as a linear combination of output states
from different noisy circuit configurations.

1. Sample from the distribution of circuit configuration.

2. Measure in computation basis {𝑍𝑖}, post-process to obtain the set
of observables {Π𝑧}.

3. Attaching minus sign to the output according to the circuit
configuration or measurement results of additional observable.

4. Obtained one sample of {0, ±1} for every Π𝑧 in each run.

5. 𝑝𝑒𝑚 z is estimated by taking the average over all samples of Π𝑧,
and multiply the result with a normalisation factor 𝐴.

13

Sampling overhead

• Let us consider the trivial observable 𝐼:

 መ𝐼 = σ𝑧
Π𝑧 ⇒ Var[መ𝐼] = σ𝑧 Var[Π𝑧]

• i.e. the variance of estimating a single observable 𝐼 is the same as the
total variance of estimating the probability of all 𝑧, i.e. the entire
probability distribution.

• For a given number of circuit runs, the total variance achieved for all
entries in the entire estimated distribution is actually similar to the
variance of one single observable.

14

How to sample from the QEM distribution?

• Without QEM, when measure 𝑧 in a circuit run, we put one sample
into the “bucket” corresponding to outcome 𝑧.

• With QEM, when measure 𝑧 in a circuit run, there is also a additional
sign associated with the circuit configuration we are running:

• +ve sign: add one sample into the “bucket” corresponding to
outcome 𝑧

• -ve sign: remove one sample from the “bucket” corresponding to
outcome 𝑧

15

How to sample from the QEM distribution?

• There can be negative number of samples! Esp. when the number of
circuit run is small.

• When comes to interpretation of results, these negative number can
effectively be treated as zero since any components below zero are
entirely due to shot noise.

16

Application to Quantum Phase Estimation

• Considering using quantum phase estimation for obtaining ground
state energy.

• Instead of trying to obtain the whole distribution, we are trying to
obtain the smallest string from the output distribution.

• Cannot simply output the smallest string from the estimated error-
mitigated distribution, since shot noise can turn zero-probability
entries to non-zero.

17

Application to Quantum Phase Estimation

• An additional step to test whether an entry is likely to be zero or not.

• Set a threshold probability 𝑝th(𝑧) for each entry such that
• Ƹ𝑝em 𝑧 ≤ 𝑝th 𝑧 ⇒ Accept null: 𝑝em 𝑧 = 0

• Ƹ𝑝em 𝑧 > 𝑝th 𝑧 ⇒ Accept null: 𝑝em 𝑧 > 0

• 𝑝th 𝑧 can be set using:
• Proportional to the sample standard deviation of the Ƹ𝑝em 𝑧 estimator.

• Known lower bound of the probability of the smallest string.

18

Numerical Simulation

• QPE with 4-bit precision

• Circuit error rate ∼ 0.6

• 106 runs

19

• Total square errors reduced from
0.297 to 0.004

• Valid threshold: 0.03 < 𝑝th < 0.16

Summary

• QEM can be used for recovering the output distribution and
also sampling from it.

• Mitigating errors in the entire distribution is as cheap as one
observable.

• Outlook:
• Explicit analysis for more QEM techniques and more

applications. Going
• Beyond linear QEM.
• Direct mitigation for a specific algorithm without

estimating/sampling the distribution

20

	Slide 1: Quantum Error Mitigation for Sampling Algorithms
	Slide 2: Quantum Error Mitigation (QEM)
	Slide 3: Dealing with dangerous errors
	Slide 4: Applicability of QEM
	Slide 5: Dealing with dangerous errors
	Slide 6: QEM for Sampling Algorithm
	Slide 7: Error-mitigated State
	Slide 8: Examples of Error-mitigated States
	Slide 9: QEM for Recovering Output Distribution
	Slide 10: QEM for Recovering Output Distribution
	Slide 11: QEM for Recovering Output Distribution
	Slide 12: PEC Example
	Slide 13: QEM for Recovering Output Distribution
	Slide 14: Sampling overhead
	Slide 15: How to sample from the QEM distribution?
	Slide 16: How to sample from the QEM distribution?
	Slide 17: Application to Quantum Phase Estimation
	Slide 18: Application to Quantum Phase Estimation
	Slide 19: Numerical Simulation
	Slide 20: Summary
	Slide 21
	Slide 22: Post-selection VS Post-processing
	Slide 23: TVD VS TSE
	Slide 24: Simulation results for 10 runs
	Slide 25: Error threshold value
	Slide 26

