A Silicon Surface Code Architecture Resilient Against Leakage Errors

Zhenyu Cai^{1,3}, Michael A Fogarty^{2,3}, Simon Schaal², Sofia Patomaki^{2,3}, Simon C Benjamin^{1,3}, John JL Morton^{2,3} QEC19, August 2019

¹University of Oxford, ²University College London, ³Quantum Motion Technologies Ltd

Silicon Spin Qubits

(a) Superconducting Qubits (Google)

(a) Superconducting Qubits (Google)

(b) Trapped Ion Qubits (UMD)

(a) Superconducting Qubits (Google)

(b) Trapped Ion Qubits (UMD)

(c) Silicon Qubits (QuTech)

• Mapping electron spin states to qubits

 $\left|\uparrow
ight
angle,\left|\downarrow
ight
angle
ightarrow\left|0
ight
angle,\left|1
ight
angle$

• Such an isolated spin qubit can be created by trapping a single electron in the quantum dot.

¹Image from Schreiber and Bluhm 2018

Gate fidelity:

 $^1\mbox{Yang}$ et al. 2019, $^2\mbox{Huang}$ et al. 2019, $^3\mbox{Gidney}$ and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% ¹
- Two-qubit gate: \sim 98% 2

 $^1\mathrm{Yang}$ et al. 2019, $^2\mathrm{Huang}$ et al. 2019, $^3\mathrm{Gidney}$ and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% $^{\rm 1}$
- Two-qubit gate: \sim 98% 2

Scalability:

 $^1\mbox{Yang}$ et al. 2019, $^2\mbox{Huang}$ et al. 2019, $^3\mbox{Gidney}$ and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% ¹
- Two-qubit gate: \sim 98% 2

Scalability:

• All electrical control.

 $^1\mathrm{Yang}$ et al. 2019, $^2\mathrm{Huang}$ et al. 2019, $^3\mathrm{Gidney}$ and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% $^{\rm 1}$
- Two-qubit gate: \sim 98% 2

Scalability:

- All electrical control.
- Potentially compatible with commercial fabrication process.

¹Yang et al. 2019, ²Huang et al. 2019, ³Gidney and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% ¹
- Two-qubit gate: \sim 98% 2

Scalability:

- All electrical control.
- Potentially compatible with commercial fabrication process.
- High qubit density (10⁹ qubits/cm²)

 $^{^1\}mathrm{Yang}$ et al. 2019, $^2\mathrm{Huang}$ et al. 2019, $^3\mathrm{Gidney}$ and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% $^{\rm 1}$
- Two-qubit gate: \sim 98% 2

Scalability:

- All electrical control.
- Potentially compatible with commercial fabrication process.
- High qubit density $(10^9 \text{ qubits/cm}^2)$

Importance of scalability:

¹Yang et al. 2019, ²Huang et al. 2019, ³Gidney and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% ¹
- Two-qubit gate: \sim 98% 2

Scalability:

- All electrical control.
- Potentially compatible with commercial fabrication process.
- High qubit density (10⁹ qubits/cm²)

Importance of scalability: 2048 bit Shor's factoring in 8 hours

 $^{^1\}mathrm{Yang}$ et al. 2019, $^2\mathrm{Huang}$ et al. 2019, $^3\mathrm{Gidney}$ and Ekera 2019

Gate fidelity:

- Single-qubit gate: Exceed 99.9% $^{\rm 1}$
- Two-qubit gate: \sim 98% 2

Scalability:

- All electrical control.
- Potentially compatible with commercial fabrication process.
- High qubit density (10⁹ qubits/cm²)

Importance of scalability: 2048 bit Shor's factoring in 8 hours \Rightarrow tens of millions of qubits ³

 $^1\mathrm{Yang}$ et al. 2019, $^2\mathrm{Huang}$ et al. 2019, $^3\mathrm{Gidney}$ and Ekera 2019

Surface Code

Surface Code

• Surface code is an error correction code that has one of the highest error threshold ($\sim 1\%$) using qubits in a 2D layout.

Surface Code

- Surface code is an error correction code that has one of the highest error threshold ($\sim 1\%$) using qubits in a 2D layout.
- It geometry is very favourable for silicon qubit fabrication.

Challenges in Scaling-up

Challenges of scaling up

• Dense packing of classical control lines.

¹Images from Zajac et al. 2018

Solution to Control Line Packing: Shared Control Lines

¹Veldhorst et al. 2017, ²Li et al. 2018

Solution to Control Line Packing: Shared Control Lines

(a) Crossbar architecture¹

¹Veldhorst et al. 2017, ²Li et al. 2018

(b) Half-filled crossbar architecture²

Solution to Control Line Packing: Modular Architecture

Figure 1: A modular network structure for silicon surface code ¹

¹Buonacorsi et al. 2019

• Leakage error: the quantum system escape out of the computational subspace that are used to defined the qubits.

- Leakage error: the quantum system escape out of the computational subspace that are used to defined the qubits.
- In a superconducting qubit: leakage errors ⇒ escaping out of the two lowest energy level.

• Similarly for trapped ion qubits.

Leakage Error in silicon

Single Electron Spin Qubits \Rightarrow Charge Leakage Error:

Leakage Error in silicon

Single Electron Spin Qubits \Rightarrow Charge Leakage Error:

• Two-qubit gate:

• Shuttling:

- Leakage errors cannot be corrected by QEC code.
 - \Rightarrow accumulation of errors.
 - \Rightarrow corrupting logical quantum information.

Figure 2: Leakage Detection Circuit.

- Normal data qubit: ancilla flip once \Rightarrow 1
- Leaked data qubit: ancilla does not flip $\Rightarrow 0$

¹Preskill 1998, ² Gottesman Ph.D Thesis

¹Aliferis and Terhal 2007, ²Fowler 2013, ³ Suchara et al. 2015

Limitation of Existing Leakage Fixing Circuits

• Assuming two-qubit gates do not transfer leakages:

Does not apply to charge leakage errors in silicon.

• Assuming two-qubit gates do not transfer leakages:

Does not apply to charge leakage errors in silicon.

• How to restored the left-over leaked qubits:

Hard to fit charge reservoirs next to every dot in a dense quantum dot array for *restoring leakage* in silicon.

- How to fit in the control lines
- How to restore leakage errors

Our Solution
- How to fit in all the control lines
- How to restore leakage errors

Introduce elongated mediator quantum dots to mediate two-qubit interaction.

- How to fit in all the control lines
- How to restore leakage errors

Introduce elongated mediator quantum dots to mediate two-qubit interaction.

- How to fit in all the control lines : provide *extra spaces* for classical control lines and charge reservoirs.
- How to restore leakage errors

Introduce elongated mediator quantum dots to mediate two-qubit interaction.

- How to fit in all the control lines : provide *extra spaces* for classical control lines and charge reservoirs.
- How to restore leakage errors : use the electrons in the mediator to *restore the leakage in the qubits in real time*.

(a) Mediated interaction

(a) Mediated interaction

• Interaction strength $\propto \frac{1}{\Delta^2}$

(a) Mediated interaction

- Interaction strength $\propto \frac{1}{\Lambda^2}$
- Turn on interaction: decrease $\Delta \Rightarrow align$ mediator energy level.

- Interaction strength $\propto \frac{1}{\Lambda^2}$
- Turn on interaction: decrease $\Delta \Rightarrow$ align mediator energy level.
- Turn off interaction: increase $\Delta \Rightarrow$ raise mediator energy level.

Figure 3: Restoration of leakage via mediators.

- Relaxation time scale (\sim 10 ns) \ll other operations (μ s).
- e-e repulsion in qubit dots \gg energy scale of other operations.

Figure 4: Architecture layout

• Isolated plaquettes within each partition.

- Isolated plaquettes within each partition.
- Reset inactive partitions.

- Isolated plaquettes within each partition.
- Reset inactive partitions.
- \Rightarrow Leakage errors will be contained within individual plaquette.

Stabiliser Check

Double-dot ancilla: ¹Jones et al. 2018, ²Veldhorst at al. 2017

Double-dot ancilla: ¹Jones et al. 2018, ²Veldhorst at al. 2017

Stabiliser Check

(b) The Stabiliser Check Circuit

Stabiliser Check

(b) The Stabiliser Check Circuit

Two-qubit gate: Each CZ contains two √SWAP. Each √SWAP has probability ^{P2}/₂ of having a SWAP error.

- Two-qubit gate: Each CZ contains two √SWAP. Each √SWAP has probability ^{P2}/₂ of having a SWAP error.
- Single-qubit gate, initialisation and readout: assumed to have depolarising error of probability $p_1 = 0.1p_2$.

- Two-qubit gate: Each CZ contains two √SWAP. Each √SWAP has probability ^{P2}/₂ of having a SWAP error.
- Single-qubit gate, initialisation and readout: assumed to have depolarising error of probability $p_1 = 0.1p_2$.
- Leakage event:

- Two-qubit gate: Each CZ contains two √SWAP. Each √SWAP has probability ^{P2}/₂ of having a SWAP error.
- Single-qubit gate, initialisation and readout: assumed to have depolarising error of probability $p_1 = 0.1p_2$.
- Leakage event:

- Two-qubit gate: Each CZ contains two √SWAP. Each √SWAP has probability ^{P2}/₂ of having a SWAP error.
- Single-qubit gate, initialisation and readout: assumed to have depolarising error of probability $p_1 = 0.1p_2$.
- Leakage event: p_{leak} is the probability of a leakage happens during a CZ gate ⇒ each half of the stabiliser check will have 2p_{leak} probability to get depolarised.

If the error rate of the circuit components is:

- Above threshold: more physical qubits will introduce more errors ⇒ ineffective error correction.
- Below threshold: more physical qubits can offer more protections for the logical qubits ⇒ effective error correction.

Threshold result

Figure 5: The threshold of the gate errors in the absence of leakage errors $\sim 0.77\%$, which is comparable to the $0.5 \sim 1\%$ of the standard surface code thresholds.
Threshold result

Figure 6: The threshold of leakage error with fixed two-qubit gate error rate ($p_2 = 0.5\%$) is $p_{leak} \sim 0.23\%$. The leakage error threshold can reach $\sim 0.66\%$ in the absence of gate error ($p_2 = 0\%$).

• **Problem:** The challenges of packings of classical control line and leakage errors in silicon quantum dot qubits.

- **Problem:** The challenges of packings of classical control line and leakage errors in silicon quantum dot qubits.
- Our solution:
 - Introduction of mediator dots.
 - Design of stabiliser and mediator reset cycle.

- **Problem:** The challenges of packings of classical control line and leakage errors in silicon quantum dot qubits.
- Our solution:
 - Introduction of mediator dots.
 - Design of stabiliser and mediator reset cycle.
- **Result:** The damage of the leakage errors is reduced to a comparable level as the standard gate errors.

- **Problem:** The challenges of packings of classical control line and leakage errors in silicon quantum dot qubits.
- Our solution:
 - Introduction of mediator dots.
 - Design of stabiliser and mediator reset cycle.
- **Result:** The damage of the leakage errors is reduced to a comparable level as the standard gate errors.
- Our architecture can be a practical way to implement scalable surface code in silicon structure.

- **Problem:** The challenges of packings of classical control line and leakage errors in silicon quantum dot qubits.
- Our solution:
 - Introduction of mediator dots.
 - Design of stabiliser and mediator reset cycle.
- **Result:** The damage of the leakage errors is reduced to a comparable level as the standard gate errors.
- Our architecture can be a practical way to implement scalable surface code in silicon structure.
- Leakage errors are highly hardware-dependent.
 ⇒ Most effective solution: likely to be hardware-based.