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Silicon Quantum Dot Spin Qubits

e Mapping electron spin states

)
]
Metallic gates

Negative bias
Positive bias

to qubits

1) 1) = 10), 1)

e Such an isolated spin qubit
can be created by trapping a
single electron in the quan-
tum dot.

'Image from Schreiber and Bluhm 2018
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Silicon Quantum Dot Spin Qubits

Gate fidelity:
e Single-qubit gate: Exceed 99.9% !
e Two-qubit gate: ~ 98% 2
Scalability:
e All electrical control.
e Potentially compatible with commercial fabrication process.
e High qubit density (10° qubits/cm?)

Importance of scalability: 2048 bit Shor’s factoring in 8 hours =
tens of millions of qubits 3

Yang et al. 2019, ?Huang et al. 2019, >Gidney and Ekera 2019
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e Surface code is an error correction code that has one of the



Surface Code
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e Surface code is an error correction code that has one of the
highest error threshold (~ 1%) using qubits in a 2D layout.

e It geometry is very favourable for silicon qubit fabrication.
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Challenges of scaling up

e Dense packing of classical control lines.
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'Images from Zajac et al. 2018



Solution to Control Line Packi
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Solution to Control Line Packing: Shared Control Lines

ubit adress

_____ I
| P T
|y
THyraraianH e

A
e T

= * £ CLbarrier gate voltage |

(a) Crossbar architecture (b) Half-filled crossbar architecture?

Veldhorst et al. 2017, 2Li et al. 2018



Solution to Control Line Packing: Modular Architecture
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Figure 1: A modular network structure for silicon surface code *

!Buonacorsi et al. 2019
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Leakage Error

e Leakage error: the quantum system escape out of the com-
putational subspace that are used to defined the qubits.

e In a superconducting qubit: leakage errors = escaping out of

the two lowest energy level.

Leaked
states

e Similarly for trapped ion qubits.



Leakage Error in silicon

Single Electron Spin Qubits = Charge Leakage Error:
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Leakage Error in silicon

Single Electron Spin Qubits = Charge Leakage Error:

e Two-qubit gate:
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e Shuttling:
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Leakage Error

e Leakage errors cannot be corrected by QEC code.
—> accumulation of errors.

=> corrupting logical quantum information.
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Leakage Detection
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Figure 2: Leakage Detection Circuit.
e Normal data qubit: ancilla flip once = 1

e Leaked data qubit: ancilla does not flip = 0

1Preskill 1998, 2 Gottesman Ph.D Thesis
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Leakage Reduction

data ancilla
data — — ancilla (leaked) | w | (leaked)
A z
>
\J la 4
ancilla, — L dats, ancilla new data
(a) Normal Qubit (b) Leaked Qubit

! Aliferis and Terhal 2007, >Fowler 2013,  Suchara et al. 2015
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Limitation of Existing Leakage Fixing Circuits
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Limitation of Existing Leakage Fixing Circuits

e Assuming two-qubit gates do not transfer leakages:
Does not apply to charge leakage errors in silicon.
e How to restored the left-over leaked qubits:

Hard to fit charge reservoirs next to every dot in a dense quan-
tum dot array for restoring leakage in silicon.
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Challenges in scaling up silicon qubits

e How to fit in the control lines

e How to restore leakage errors

ii5)



Our Solution
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e How to fit in all the control lines

e How to restore leakage errors
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Our architecture

Introduce elongated mediator quantum dots to mediate two-qubit
interaction.

e How to fit in all the control lines : provide extra spaces for
classical control lines and charge reservoirs.

e How to restore leakage errors : use the electrons in the
mediator to restore the leakage in the qubits in real time.
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Our architecture
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Mediated Exchange Interaction
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Mediated Exchange Interaction
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(a) Mediated interaction

: 1
e Interaction strength o >

e Turn on interaction: decrease A = align mediator energy level.

18



Mediated Exchange Interaction
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(a) Mediated interaction (b) Turn off interaction

: 1
e Interaction strength o £
e Turn on interaction: decrease A = align mediator energy level.

e Turn off interaction: increase A = raise mediator energy level.
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Leakage Restoration
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Figure 3: Restoration of leakage via mediators.
e Relaxation time scale (~ 10 ns) < other operations (1s).

e e-e repulsion in qubit dots > energy scale of other operations.
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Leakage Restoration
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Figure 4: Architecture layout
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Leakage Restoration
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Leakage Restoration
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Leakage Restoration
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Leakage Restoration
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Surface Code Partitions
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Surface Code Partitions

e [solated plaquettes within each partition.
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Surface Code Partitions

e [solated plaquettes within each partition.

e Reset inactive partitions.
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Surface Code Partitions

e [solated plaquettes within each partition.
e Reset inactive partitions.
= Leakage errors will be contained within individual plaquette.

22



Stabiliser Check

(a) Physical layout

Double-dot ancilla: *Jones et al. 2018, ?Veldhorst at al. 2017
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Stabiliser Check
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(a) Physical layout (b) The Stabiliser Check Circuit

Double-dot ancilla: *Jones et al. 2018, ?Veldhorst at al. 2017
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Stabiliser Check
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Stabiliser Check
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Stabiliser check
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Error Model

e Two-qubit gate: Each CZ contains two vVSWAP. Each v/SWAP
has probability 2 of having a SWAP error.
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Error Model

e Two-qubit gate: Each CZ contains two vVSWAP. Each v/SWAP
has probability 2 of having a SWAP error.

e Single-qubit gate, initialisation and readout: assumed to
have depolarising error of probability p; = 0.1p».

e Leakage event: pj. is the probability of a leakage happens
during a CZ gate = each half of the stabiliser check will have
2pjeak probability to get depolarised.

(1]

O " )
)
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Now Finding The Quantum Error Threshold

If the error rate of the circuit components is:

e Above threshold: more physical qubits will introduce more

errors = ineffective error correction.

e Below threshold: more physical qubits can offer more protec-
tions for the logical qubits = effective error correction.
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Threshold result
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Figure 5: The threshold of the gate errors in the absence of leakage
errors ~ 0.77%, which is comparable to the 0.5 ~ 1% of the standard
surface code thresholds.
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Threshold result
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Figure 6: The threshold of leakage error with fixed two-qubit gate error
rate (p2 = 0.5%) is preak ~ 0.23%. The leakage error threshold can reach
~ 0.66% in the absence of gate error (p2 = 0%).
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e Problem: The challenges of packings of classical control line

and leakage errors in silicon quantum dot qubits.
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e Problem: The challenges of packings of classical control line

and leakage errors in silicon quantum dot qubits.
e QOur solution:
e Introduction of mediator dots.
e Design of stabiliser and mediator reset cycle.

e Result: The damage of the leakage errors is reduced to a com-
parable level as the standard gate errors.

e Our architecture can be a practical way to implement scalable
surface code in silicon structure.

e Leakage errors are highly hardware-dependent.
= Most effective solution: likely to be hardware-based.
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