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SATURDAY, 2 JUNE 2018, 2.30pm to 4.15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

You should ensure that you:

• start a new answer booklet for each question which you attempt.

• indicate on the front page of the answer booklet which question you have attempted in that
booklet.

• cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

• hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. (a) [3 marks] Consider a Boolean function f : {0, 1}n → {0, 1} and its quantum evaluation,

|x 〉| y 〉 7→ |x 〉| y ⊕ f(x) 〉,

where x ∈ {0, 1}n and y ∈ {0, 1} are the binary strings placed in the first and the second
register respectively. Explain how the quantum evaluation of f can be reduced to the
unitary operation Uf on the first register,

Uf |x 〉 = (−1)f(x)|x 〉.

What is the geometric interpretation of this transformation?

(b) [2 marks] The reflection in the subspace that is orthogonal to | a 〉 can be written as

Va = 1− 2| a 〉〈 a |.

Provide the geometric interpretation of UVaU
†, where U is a unitary operator.

(c) [5 marks] Let f(x) = 1 for x = s and f(x) = 0 otherwise. We denote the Hadamard
transform on n qubits by Hn and the reflection in the subspace that is orthogonal to | 0 〉
by V0. (The vector | 0 〉 represents the binary string of n zeros, | 0 . . . 0 〉.) Describe the
action of the Grover iteration operator

G = −HnV0HnUf ,

in the plane spanned by Hn| 0 〉 and the unknown | s 〉.

A quantum algorithm A, which solves a certain problem in the complexity class NP, can be
viewed as a unitary operation A on n qubits. The result of A| 0 〉 is the state |ψ 〉, which is a
superposition of binary strings representing possible, not necessarily correct, outputs. It is known
that a subsequent measurement in the computational basis provides a correct answer to the problem
with the probability p = sin2 θ � 1 and that |ψ 〉 can be written as

|ψ 〉 = sin θ |ψg 〉+ cos θ |ψb 〉,

where |ψg 〉 and |ψb 〉 are normalised projections of |ψ 〉 onto the subspace spanned by the binary
strings corresponding to good and bad answers, respectively. Let Uf correspond to the Boolean
function f : {0, 1}n → {0, 1} that verifies the outputs of A, that is, f(x) = 1 if x is the correct
output and f(x) = 0 otherwise. You can assume that A, A† and Uf can be efficiently implemented.

(d) [8 marks] Show that the subspace spanned by |ψg 〉 and |ψb 〉 is invariant under the action
of the modified Grover iteration operator Q,

Q = −AV0A†Uf ,

and express Q|ψg 〉 and Q|ψb 〉 as linear superpositions of |ψg 〉 and |ψb 〉.
(e) [3 marks] Show that after r applications of Q to the state |ψ 〉 we obtain

Qr|ψ 〉 = sin((2r + 1)θ)|ψg 〉+ cos((2r + 1)θ)|ψb 〉.

How many applications of Q are required before you can perform a measurement and
obtain a correct answer with probability at least 1− p?

(f) [4 marks] Provide an informal description of the complexity class NP. Does it matter here
that A solves a problem which is in NP?
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2. (a) [3 marks] Two qubits are prepared in one of the four Bell states

|Φ± 〉 = 1√
2
(| 00 〉 ± | 11 〉), |Ψ± 〉 = 1√

2
(| 01 〉 ± | 10 〉).

Show that the Bell states form an orthonormal basis in the Hilbert space associated with
two qubits. What does it mean that the Bell states are stabilised by ±Z⊗Z and ±X⊗X?
Specify stabiliser generators for each of the four Bell states.

(b) [2 marks] Let S1 and S2 be stabiliser generators for a two qubit state |ψ 〉. The state is
modified by a unitary operation U . What are the stabiliser generators for U |ψ 〉?

(c) [3 marks] Recall that the n-qubit Pauli group is defined as

Pn = {1, X, Y, Z}⊗n ⊗ {±1,±i}

where X, Y , Z are the Pauli matrices. Each element of Pn is, up to an overall phase
±1, ±i, a tensor product of Pauli matrices and identity matrices acting on the n qubits.
Elements of the Pauli group either commute or anticommute. Show, using stabiliser
generators or otherwise, that, up to an overall phase, the elements of P2 map the Bell
states into the Bell states.

(d) [4 marks] Charlie prepares three qubits in the state

1√
2

(| 000 〉+ | 111 〉) . (1)

He gives one qubit to Alice and one to Bob, and keeps the third one for himself. Trace
over the third qubit and show that Alice and Bob share a bipartite state described by the
density operator

% =
1

2
|Φ+ 〉〈Φ+ |+

1

2
|Φ− 〉〈Φ− |.

Is this an entangled state?

(e) [4 marks] Given the bipartite state %, Alice applies one of the four unitary operations
{1, X, Y, Z} to her qubit and sends it to Bob. Can Bob, who performs the measurement
in the Bell basis, tell which operation was chosen by Alice? How many bits of information
can Alice communicate to Bob?

(f) [5 marks] Charlie, after preparing the state (1) and giving the two qubits to Alice and
Bob, applies the Hadamard gate to his qubit and then measures it in the standard basis.
He communicates the outcome of the measurement to Bob. Can Bob now tell which of
the four operations was chosen by Alice, and if so, how? Does it matter whether Charlie
performs his measurement before or after Bob’s measurement?

(g) [4 marks] Suppose a third party, who may or may not know the outcome of Bob’s measure-
ment, intercepts the qubit that Alice sent to Bob. Explain why there is no measurement
that the third party can perform to determine which message Alice transmits.
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3. Any density matrix of a single qubit can be parametrised by the three real components of the
Bloch vector ~s = (sx, sy, sz) and written as

% = 1
2 (1 + ~s · ~σ) ,

where σx, σy and σz are the Pauli matrices, and ~s · ~σ = sxσx + syσy + szσz.

(a) [3 marks] Check that such parametrised % is a density matrix. Explain why the length of
the Bloch vector cannot exceed 1.

(b) [5 marks] Any physically admissible operation on a qubit is described by a completely
positive map which can always be written as

% 7→ %′ =
∑
k

Ak%A
†
k (2)

where matrices Ak must satisfy ∑
k

A†kAk = 1. (3)

Show that this map preserves positivity and trace. Show that any composition of com-
pletely positive maps is also completely positive.

(c) [9 marks] Any linear transformation T acting on density matrices of a qubit can be com-
pletely characterised by its action on the four basis matrices | a 〉〈 b |, where a, b = 0, 1,

T (| a 〉〈 b |) =
∑

α,β=0,1

T(αa)(βb)|α 〉〈β |.

Using conditions (2) and (3), or otherwise, show that for completely positive maps the
4× 4 matrix T(αa)(βb) must be positive semidefinite and must satisfy∑

α

T(αa)(αb) = δab, T ?(αa)(βb) = T(βb)(αa).

(d) [8 marks] Let T be defined as,

T (1) = 1, T (σx) = xσx, T (σy) = yσy, T (σz) = zσz.

where x, y, z are some real numbers. What is the range of x, y, z for which the map T
is positive? Using the matrix representation of T , or otherwise, determine the range for
which it is completely positive.

[ The Pauli matrices σx ≡ X, σy ≡ Y , and σz ≡ Z are

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

They anticommute and square to the identity X2 = Y 2 = Z2 = 1.]
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