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1. The Hadamard transform on n qubits is defined as

|x 〉 7→ 1√
2n

∑
y∈{0,1}n

(−1)x·y| y 〉,

where x, y ∈ {0, 1}n and x · y ≡ (x1 · y1)⊕ . . .⊕ (xn · yn).

(a) [3 marks] Sketch the quantum circuit which effects the Hadamard transform and explain
why it is useful as the first operation in quantum algorithms.

You are presented with an oracle that computes some unknown function f : {0, 1}n → {0, 1}, but
you are promised that f is of the form

f(x) = a · x ≡ (a1 · x1)⊕ . . .⊕ (an · xn),

for some fixed a ∈ {0, 1}n. Your task is to determine the value of the n-bit string a using the
fewest queries possible.

(b) [3 marks] How many calls to the oracle are required to determine a if the oracle is clas-
sical?

(c) [7 marks] The circuit below implements a quantum algorithm which outputs the value of
a with a single call to the (quantum) oracle. In the diagram the H operations in the first
register denote the Hadamard transform on n qubits and the f operation represents the
oracle, i.e., a quantum evaluation of f : |x 〉| y 〉 7→ |x 〉| y⊕ f(x) 〉. The second register, to
which the value f(x) is added, contains one qubit prepared in state | − 〉 = 1√

2
(| 0 〉− | 1 〉).

| 0 〉⊗n

| − 〉

H H

f

| a 〉

Step through the execution of this circuit, writing down quantum states of the two registers
after each computational step. Explain how the value of a is obtained.

(d) [5 marks] If the state of the second register, | − 〉, is replaced with |+ 〉 = 1√
2
(| 0 〉+ | 1 〉),

prove that you learn nothing about the value of a by running this circuit.

(e) [7 marks] The network construction presented here can be generalised to the case of a
Boolean function f : {0, 1}n 7→ {0, 1}m. Suppose the second register contains m qubits
and the oracle evaluates the function f(x) = A ·x (modulo 2) where A is an m×n binary
matrix. By running the network m times with suitable choices for the states of the second
register all the entries of A can be determined. Explain how.
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2. Any density matrix of a single qubit can be parameterised by the three real components of the
Bloch vector ~s = (sx, sy, sz) and written as

% = 1
2 (1 + ~s · ~σ) ,

where σx, σy and σz are the Pauli matrices, and ~s · ~σ = sxσx + syσy + szσz.

(a) [2 marks] Express the eigenvalues of % in terms of the length of ~s and explain why the
length of the Bloch vector cannot exceed 1.

(b) [3 marks] Show that for any two density operators %1 and %2, Tr(%1%2) =1/2(1 + ~s1 · ~s2),
where ~s1 and ~s2 are the Bloch vectors of %1 and %2, respectively.

(c) [3 marks] Show that unitary evolutions, % 7→ U%U † preserve the scalar product of Bloch
vectors and deduce that such evolutions correspond to rotations of the Bloch sphere.
Describe these rotations for the Pauli unitaries σx, σy and σz.

(d) [3 marks] A qubit in state % is transmitted through a depolarising channel that effects a
completely positive map

% 7→ (1− p)%+
p

3
(σx%σx + σy%σy + σz%σz) ,

for some 0 6 p 6 1. Show that under this map the Bloch vector associated with % shrinks
by the factor (3− 4p)/3.

The trace norm of a matrix A is defined as

|A|tr = Tr
(√

A†A
)
.

(e) [2 marks] Explain why the trace norm of any self-adjoint matrix is the sum of the absolute
values of its eigenvalues. What is the trace norm of a density matrix?

If a physical system is equally likely to be prepared either in state %1 or state %2 then a single
measurement can distinguish between the two preparations with the probability at most

PS =
1

2
+

1

4
|%1 − %2|tr , (1)

where 1
2 |%1 − %2|tr is known as the trace distance between %1 and %2.

(f) [4 marks] Explain why the statement above implies that all physically admissible opera-
tions can only reduce the trace distance between density operators.

(g) [4 marks] A qubit is equally likely to be prepared either in state %1 or state %2. Show
that

PS =
1

2
+

1

4
|~s1 − ~s2| .

(h) [4 marks] Show that unitary evolutions do not degrade distinguishability of quantum
states but the depolarising channel does. By how much is PS decreased by the action of
the depolarising channel?
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3. The swap gate S on two qubits is defined first on product vectors, S : | a 〉 ⊗ | b 〉 7→ | b 〉 ⊗ | a 〉
and then extended to sums of product vectors by linearity.

(a) [3 marks] Show that P± = 1
2(1±S) are two orthogonal projectors which form the decom-

position of the identity and project on the symmetric and the antisymmetric subspaces.
Decompose the state vector | a 〉| b 〉 of two qubits into symmetric and antisymmetric com-
ponents.

Consider the following “swap-test” quantum circuit composed of two Hadamard gates, one controlled-
S operation and the measurement M in the computational basis,

| 0 〉

| a 〉
| b 〉

H H

S

M

The state vectors | a 〉 and | b 〉 of the target qubits are normalised but not orthogonal to each other.

(b) [5 marks] Step through the execution of this circuit, writing down quantum states of the
three qubits after each computational step. What are the probabilities of observing 0 or 1
when the measurement M is performed? Explain why this circuit implements projections
on the symmetric and the antisymmetric subspaces of the two target qubits.

(c) [3 marks] Does the measurement result M = 0 imply that | a 〉 and | b 〉 are identical?
Does the measurement result M = 1 imply that | a 〉 and | b 〉 are not identical?

(d) [5 marks] Suppose an efficient quantum algorithm encodes information about a compli-
cated graph into a pure state of a qubit. Graphs which are isomorphic are mapped into
the same state of the qubit. Given two complicated graphs your task is to check if they
are isomorphic. You can run the algorithm as many times as you want and you can use
the “swap-test” circuit. How would you accomplish this task?

(e) [6 marks] Instead of the state | a 〉⊗| b 〉 the two target qubits are prepared in some mixed
state ρa ⊗ ρb. Show that the probability of successful projection of this state on the
symmetric subspace is

1

2
(1 + Tr ρaρb) .

(f) [3 marks] Does the measurement result M = 1 imply that ρa and ρb are not identical?

[ In the computational basis, the Pauli matrices σx, σy, and σz are

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

They anticommute and square to the identity: σ2x = σ2y = σ2z = 1. They also satisfy:

(~a · ~σ)(~b · ~σ) = (~a ·~b)1 + i(~a×~b) · ~σ,

for any two Euclidean vectors ~a and ~b.]
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