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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C7.4
Honour School of Mathematics and Computer Science Part C: Paper C7.4

Honour School of Mathematical and Theoretical Physics Part C: Paper C7.4
Master of Science in Mathematical Sciences: Paper C7.4

Master of Science in Mathematical and Theoretical Physics: Paper C7.4

Introduction to Quantum Information

TRINITY TERM 2022

Monday 06 June, 14:30pm to 16:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

Candidates may bring a summary sheet into this exam consisting of (both sides of) one sheet of
A4 paper containing material prepared in accordance with the guidance given by the Mathematical

Institute.

You should ensure that you observe the following points:

• start a new answer booklet for each question which you attempt.

• indicate on the front page of the answer booklet which question you have attempted in that
booklet.

• cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

• hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so.
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1. Consider the following quantum circuit composed of two Hadamard gates, one controlled-U
operation, and the measurement M in the standard basis.

|0〉

|Ω〉

H H

U

M

The top horizontal line represents a qubit, initially in state |0〉, and the two bottom lines
represent two qubits prepared in the Bell state

|Ω〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉) .

(a) [6 marks] Step through the execution of this circuit, writing down the quantum states
of the three qubits after each computational step. Show that the final state |Ψ〉 at the
output can be written as

|Ψ〉 = |0〉 1

2

(
|Ω〉+ (U ⊗ 1) |Ω〉

)
+ |1〉 1

2

(
|Ω〉 − (U ⊗ 1) |Ω〉

)
.

(b) [7 marks] Show that the probability of obtaining outcome 0 in the M measurement is

Pr(0) =
1

2

[
1 +

1

2
Re (trU)

]
.

(c) [6 marks] You are promised that U is chosen uniformly at random to be either the
Hadamard or the identity gate. Your task is to determine which gate was chosen.

(i) Suppose you run the circuit once and you register outcome 0. Is this outcome con-
clusive? If your answer is “yes”, explain why. If your answer is “no”, is U more likely
to be the Hadamard or the identity gate?

(ii) Instead, suppose you registered the outcome 1. What can you say in this case?

(d) [6 marks] Suppose U is an unknown unitary in SU(2), and that you can run the circuit
as many times as you wish. How would you estimate the eigenvalues of U?

[Recall that SU(2) consists of the (2× 2) unitary matrices with determinant equal to 1.]
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2. The norm of an operator A ∈ B(H), denoted by ‖A‖, is the maximum length of the vector A |v〉
over all choices of normalised |v〉 ∈ H. This norm is unitarily invariant (i.e. ‖UAV ‖ = ‖A‖
for any unitaries U and V ) and submultiplicative (i.e. ‖AB‖ 6 ‖A‖‖B‖).
Throughout this question, you may use, without proof, the following fact: If A is normal (i.e.
if A†A = AA†), then ‖A‖ is equal to the largest absolute value of the eigenvalues of A.

(a) [3 marks] Justify briefly the following statements (exact derivations are not required):

(i) ‖A†‖ = ‖A‖ for any normal A.

(ii) ‖U‖ = 1 if U is unitary.

(iii) ‖Π‖ = 1 if Π 6= 0 is an orthogonal projector.

(b) [3 marks] Show that, for any operators A and B,

| 〈ψ|A†B |ψ〉 | 6 ‖A‖‖B‖.

[You may use, without proof, the Cauchy-Schwarz inequality: | 〈a|b〉 |2 6 〈a|a〉 〈b|b〉.]

Let U and V be unitary operators acting on the same Hilbert space. Think of U as the target
unitary operator that we wish to implement, and V as the unitary operator that we can actually
implement in practice. We say that V approximates U with precision ε if

‖U − V ‖ 6 ε.

(c) [5 marks] Suppose that a quantum system initially in the state |Ψ〉 evolves according to
U (respectively V ). Let Π be a projector associated with a specific outcome of some
measurement that can be performed on the system after the evolution, and let PU (re-
spectively PV ) be the probability of obtaining the corresponding measurement outcome
if the operation U (respectively V ) was performed. Show that

|PU − PV | = | 〈Ψ|U †ΠU |Ψ〉 − 〈Ψ|V †ΠV |Ψ〉 | 6 2‖U − V ‖.

[Hint: Notice that

| 〈Ψ|U †ΠU |Ψ〉 − 〈Ψ|V †ΠV |Ψ〉 | = | 〈Ψ|U †Π(U − V ) |Ψ〉+ 〈Ψ| (U † − V †)ΠV |Ψ〉 |. ]

(d) [6 marks] For unitary gates U1, V1, U2, V2 show that, if ‖U1−V1‖ 6 ε1 and ‖U2−V2‖ 6 ε2,
then

‖U2U1 − V2V1‖ 6 ε1 + ε2.

(e) [4 marks] Deduce that, if ‖Ui − Vi‖ 6 ε for i = 1, . . . , n, then

‖Un . . . U1 − Vn . . . V1‖ 6 nε.

(f) [4 marks] Suppose we wish to implement a quantum circuit containing d gates, U1 through
Ud, but we are only able to approximate each Ui by some Vi. We require that the
probabilities of different outcomes obtained from the approximate circuit be within a
tolerance δ of the correct probabilities. What is the required precision of approximation
for each gate?
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3. Any density matrix of a single qubit can be parameterised by the three real components of the
Bloch vector ~s = (sx, sy, sz) and written as

ρ =
1

2
(1 + sxX + syY + szZ)

where X ≡ σx = [ 0 1
1 0 ], Y ≡ σy =

[
0 −i
i 0

]
, and Z ≡ σz = [ 1 0

0 1 ] are the Pauli matrices.

(a) [4 marks] One of the Pauli operators, 1, X, Y or Z, was chosen uniformly at random and
applied to a qubit in state ρ, but you do not know which particular operator was chosen.
Show, using the Bloch vector parametrisation or otherwise, that from your perspective
the qubit is now prepared in the maximally mixed state

ρ 7−→ 1

4
1ρ1 +

1

4
XρX +

1

4
Y ρY +

1

4
ZρZ =

1

2
1.

(b) [5 marks] Alice has n qubits, each of them in state ρ. For each 1 6 k 6 n, she chooses
two key bits ak, bk ∈ {0, 1} uniformly at random, which are then used to “encrypt” the
kth qubit through the following operation:

ρ 7−→ XakZbk ρZbkXak .

The qubits are then passed to Bob, who does not know any of the key bits ak, bk. Show
that from Bob’s perspective the outcomes of any complete projective measurement on the
qubits are all equally likely.

(c) [5 marks] Alice picks key bits a, b ∈ {0, 1} uniformly at random and doesn’t tell anybody
what they are. She uses them to encrypt a qubit:

ρ 7−→ XaZbρZbXa.

She then passes the qubit to Bob, who applies the Hadamard gate H to the encrypted
state as follows,

XaZbρZbXa 7−→ HXaZbρZbXaH,

and returns the qubit back to Alice. Before returning the qubit, can Bob obtain any
information about the state ρ? Show that Alice can decrypt the returned qubit and
obtain the desired state HρH. What is the decrypting operation?

Recall that a unitary C is said to be a Clifford gate if, for any tensor product P of Pauli operators,
CPC† is (up to a phase factor) another tensor product of Pauli operators. Examples of Clifford
gates include the Hadamard and the controlled-not gate.

(d) [3 marks] Show that compositions of Clifford gates are again Clifford gates.

Alice has n qubits in some initial state ρ⊗n that she wants to operate on, but she has limited
quantum capabilities: Alice can only implement the Pauli gates. Bob is able to implement any
unitary gate, and so can perform Alice’s desired computation, but Alice does not want to reveal
any information about the state ρ.

(e) [4 marks] Suppose Alice wants to apply a sequence of multi-qubit Clifford gates C1, C2,
. . ., Cm to her n qubits. Explain how Alice can delegate quantum computation to Bob so
that Bob cannot learn anything about the state ρ, but Alice, upon receiving the modified
qubits from Bob, can retrieve the desired result of computation.

(f) [4 marks] If the computation that Alice wants to perform is described by a unitary gate
which is not a Clifford gate, can she still use the same method to delegate the computation
to Bob?
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