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Introduction to Quantum Information

TRINITY TERM 2024
Friday 31 May, 2:30pm to 4:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

You should ensure that you observe the following points:

• start a new answer booklet for each question which you attempt.

• indicate on the front page of the answer booklet which question you have attempted in that
booklet.

• cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

• hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. The two most popular quantum gates are the Hadamard gate and the controlled-not gate.
(a) [2 marks] What are the matrix representations of these two gates in the standard com-

putational basis?

The Hadamard transform on n qubits is defined as

|x〉 7→ 1√
2n

∑
y∈{0,1}n

(−1)x·y |y〉 ,

where x, y ∈ {0, 1}n and x · y ≡ (x1 · y1)⊕ . . .⊕ (xn · yn).
(b) [2 marks] Sketch the quantum circuit for implementing a three-qubit Hadamard trans-

form.

The three circuits below implement three different parity checks: x1 ⊕ x2, x2 ⊕ x3 and x1 ⊕ x3,

x1 ⊕ x2

|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 |x3〉

|0〉 x2 ⊕ x3

|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 |x3〉

|0〉 x1 ⊕ x3

|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 |x3〉

|0〉

Each circuit can also be viewed as implementing a Boolean function f : {0, 1}3 → {0, 1} of the
form

f(x) = a · x ≡ (a1 · x1)⊕ (a2 · x2)⊕ (a3 · x3),

for some a ∈ {0, 1}3.
(c) [5 marks] What are the binary strings a corresponding to the three parity checks?

One of the three parity-check circuits was chosen uniformly at random and given to you in the
form of a black box. Your task is to identify which one of the three was chosen using the black box
only once and with zero probability of error. This can be accomplished using the following circuit:

|0〉⊗3 H H ?

|−〉 f ?

In the diagram, H denotes the Hadamard transform on 3 qubits in the first register, and f repre-
sents the oracle operation f : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉. The single-qubit second register, prepared
in the state |−〉 = 1√

2
(|0〉 − |1〉), receives the value f(x).

(d) [6 marks] Step through the execution of the circuit, write down quantum states after each
computational step, and explain how the value of a is obtained.

(e) [4 marks] Suppose the second register is prepared in the state |+〉 = 1√
2
(|0〉+ |1〉). What

would the output of the circuit be?
(f) [6 marks] Now suppose that the input in the second register has decohered to the maxi-

mally mixed state. Explain why it is still possible to distinguish the three circuits with
zero error probability as long as an inconclusive result is allowed. What is the probability
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of the inconclusive answer? What is the probability of the inconclusive answer if a is
chosen to be not one of the three but one of the eight possible 3-bit binary strings?
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2. We define a stabiliser group S by picking two generators: the parity-check operators X1X2

and Z1Z2, where the subscript denotes the data qubit on which the Pauli operator acts (e.g.
X1X2 = X ⊗X).
(a) [2 marks] Specify all the elements of this group S, as well as the state they all stabilise.

Consider the following Tanner graph (left) composed of two data qubits, D1 and D2, and two
parity-check qubits, S1 and S2, which carry the parity-check results (s1s2) associated with the
stabilisers S1 = X1X2 and S2 = Z1Z2. In the Tanner graph, solid lines refer to the Z-checks and
dashed ones to the X-checks.

D1

D2

S1

S2

s1

s2

S1 : |0〉 H H

S2 : |0〉 H H

D1 : X Z

D2 : X Z

The corresponding parity check circuit is shown on the right. The data qubits, D1 and D2, are
prepared in the state 1√

2
(|00〉+ |11〉), and the parity-check qubits are initially both in state |0〉.

(b) [2 marks] Pauli operators either commute or anticommute. Which feature of the Tanner
graph above tells us that S1 and S2 commute?

(c) [5 marks] One of the two data qubits experiences a bit flip, a phase flip, or both. Will the
measurement of the stabilisers S1 and S2 detect the error? Will it identify the affected
qubit? Will it be possible to restore the two qubits to the original state? Provide brief
explanations for each of your answers.

The Tanner graph below represents a surface code with five data qubits, D1, . . . , D5, and four
parity check qubits, S1, . . . , S4.

D1 D2

D3

D4 D5

S1

S2 S3

S4

X checks:
Z checks:

(d) [3 marks] Explain why the set of operators {S1, . . . , S4} given in the Tanner graph forms
a valid set of stabiliser generators.

(e) [1 mark] How many logical qubits are encoded with this code?
(f) [5 marks] Identify a weight-2 X operator (i.e. a tensor product of two physical X opera-

tors) that commutes with all elements in the stabiliser group, but is not in the stabiliser
group. Do the same for a weight-2 Z operator. Explain why these two operators can be
used to represent logical X and Z operators, respectively.

(g) [3 marks] Can this code detect all single-qubit errors? What is the distance of this code?
(h) [4 marks] Suppose a single-qubit Pauli error has occurred and the stabiliser measurements

give the error syndrome (s1s2s3s4) = (1100). What kind of error occurred and on which
qubit? Answer the same questions for the error syndrome (1000).
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3. A quantum channel A is a completely-positive trace-preserving linear map A : B(H) → B(H′)
that transforms density operators ρ on H into density operators ρ′ = A(ρ) on H′. The
dimensions of the two Hilbert spaces, H and H′, may be different. Any quantum channel
admits a Kraus decomposition

A(ρ) =
n∑

i=1

AiρA
†
i ,

where A1, . . . , An are the Kraus operators, which satisfy
∑n

i=1A
†
iAi = 1.

(a) [2 marks] Show that a composition of two quantum channels with Kraus operators {Ai}
and {Bj} (respectively) is another quantum channel.

The Kraus decomposition is not unique. All possible sets of Kraus operators associated with a
given quantum channel are unitarily related.

(b) [4 marks] Given a set of Kraus operators {Aj} of size n and some unitary m×m matrix,
where m ⩾ n, show that the set of operators {A′

i} of size m, where A′
i =

∑n
j=1 uijAj , is

another set of Kraus operators that represents the same quantum channel.
(c) [3 marks] Explain why the identity channel ρ′ = 1ρ1 =

∑
iAiρA

†
i can only have Kraus

operators that are proportional to the identity: Ai = λi1, for some complex number λi.
Show that they must further satisfy

∑
i |λi|2 = 1.

A quantum channel A is said to be reversible if there exists a quantum channel R (called the
recovery channel) such that (R · A)(ρ) = ρ for any density operator ρ ∈ B(H).

(d) [4 marks] Let R be represented by the set of Kraus operators {Ri}. Explain why RiAj =
λij1 for some complex number λij . Show that, if a quantum channel A is reversible, then
its Kraus operators satisfy A†

jAi = σji1, where σji =
∑

k λ
⋆
kjλki.

(e) [3 marks] Show that, when switching to another Kraus representation of the same chan-
nel, the reversibility criterion above still holds but with a different σji.

(f) [2 marks] Show that σji, viewed as a matrix, is a density operator.

An isometry is a linear map V : H → H′ such that V †V = 1, where the identity operator acts on
H. Consider a random isometric channel B(H) → B(H′),

ρ 7→
∑
i

piViρV
†
i ,

in which isometry Vi is chosen with probability pi, and any two isometries Vi and Vj are mutually
orthogonal, V †

i Vj = δij1, i.e. the images of H under Vi and Vj are orthogonal subspaces.
(g) [4 marks] Describe a measurement on H′ from which you can learn which particular

isometry Vi was selected? How can you reverse the action of this channel?
(h) [3 marks] Explain why it is possible to reverse certain random isometric channels but not

random unitary channels, except the trivial case of a single unitary operation.
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