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Questions Label: A - Bookwork B - Standard C - Challenging/Optional

This is a set of preliminary exercises designed as a warm up for things to come. It
will not be marked but you are strongly encouraged to attempt all the questions
and figure out all the answers by yourself. Consult the lecture-notes (https://
qubit.guide/), surf the internet or, if you are absolutely stuck and need further
help, check the hints and solutions section or approach your tutors. We do hope
you will learn something new.

0.1.A Information is physical.... ...but the classical theory of computation usu-
ally does not refer to physics and as the result it is often falsely assumed that its
foundations are self-evident and purely abstract. It is not! There is lots of power in
mathematical abstraction but there are also limitations. Here is a puzzle that illus-
trates this fact. Physics plays a role here. Mathematicians find the puzzle difficult
while most experimental physicists think it is relatively easy. Here it goes:

An old-fashioned incandescent lamp in the attic is controlled by one of three on–off
switches downstairs labelled A, B and C. But which one? Your mission is to do
something with the switches, then determine after one trip to the attic which switch
is connected to the attic lamp.

0.2.A Binary strings. Mathematicians view computation as an operation on
abstract symbols. Any finite set of symbols is called an alphabet. A string over an
alphabet is a finite sequence of symbols from that alphabet. Here, without any loss
of generality, we will use the binary alphabet {0, 1}. The set of all possible binary
strings of length n is written as {0, 1}n. For example, {0, 1}2 contains the strings
00, 01, 10 and 11. How many elements does the set {0, 1}n contain?

We say that a binary string is of even or odd parity if the number of 1’s it contains
is even or odd, respectively. The parity is often represented by the parity bit: 0 for
even and 1 for odd. What is the number of n-bit strings with an even number of
ones?

Binary strings can represent all kind of things. In particular, they can represent
numbers using the base-2 numeral system. For example, the decimal numerals
0, 1, 2, 3, 4, 5 . . . can be represented in binary as 0, 1, 10, 11, 100, 101 . . .. How many
bits are needed to represent the decimal numeral 42?

We quantify how similar are any two binary strings by counting the number of
binary places in which they differ. This distance is known as the Hamming distance.
For example, x = 0110 and y = 1100 differ in the first and the third place (counting
from the left to the right), which means that they are separated by the Hamming
distance 2. Look up the defining properties of a metric and show that that the
Hamming distance is a proper metric on {0, 1}n.

The Hamming weight of a binary string is the number of non-zero entries i.e. the
number of entries that are 1. For example, 1000 has weight 1 and 1011 has weight
3. How many binary strings of length n have weight k ?

0.3.A Binary addition and multiplication. We define two elementary operations
on binary digits: addition ⊕
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0⊕ 0 = 0, 0⊕ 1 = 1, 0⊕ 0 = 1, 1⊕ 1 = 0,
and multiplication ×,

0× 0 = 0, 0× 1 = 0, 1× 0 = 0, 1× 1 = 1.

The addition is also known as the logical XOR (exclusive OR) and the multiplication
as the logical AND (∧). We will often drop the multiplication symbol and write x×
y as xy. Mathematicians will notice right away that the set {0, 1} together with the
addition⊕ forms a group Z2 and the same set with both addition and multiplication
is the simplest example of what is called a finite field. Various notation are used
for this field, e.g. F2, GF(2), Z/2 and Z2. We can now do linear algebra over
F2. Indeed, strings on length n can be also viewed as vectors in the n-dimensional
vector space over the field F2, denoted as Fn

2 . Given two such vectors

x = (x1x2 . . . xn)

y = (y1y2 . . . yn)

we can define a bitwise inner product of x and y as

x · y = (x1y1)⊕ (x2 y2)⊕ . . . (xnyn).

For example, if x = 0110 and y = 1100 then x · y = 1. Two strings x and y are
orthogonal when x · y = 0. Here you should be careful with your

intuition - a string with an even number of
ones can be orthogonal to itself!Pick up an arbitrary non-zero a ∈ {0, 1}n. How may binary vectors in {0, 1}n are

orthogonal to a?

Multiply the following matrices, taking scalars in F20 1 1
1 1 0
0 0 1

0 1 0
1 0 0
1 1 1


Compare your answer to what you get when doing the calculation with rational
scalars.

0.4.A One-time pad.

The addition ⊕ of bits can easily be extended to the addition of binary strings;
we simply add them bit by bit. For example, two binary strings x = 0110 and
y = 1100 can be added bit by bit as x ⊕ y = 1010. The set {0, 1}n together with
the addition ⊕ forms a group Zn

2 . This kind of addition is used for encrypting and
decrypting messages in a scheme known as the one-time pad. For example, given
a cryptographic key K = 1100101 the sender can encrypt his binary message, say
M = 1011100, with key K as C = M⊕ K,

M = 1 0 1 1 1 0 0
K = 1 1 0 0 1 0 1
C = 0 1 1 1 0 0 1

The resulting cryptogram C = 0111001, can be then publicly transmitted to the
receiver, who can recover the message by adding the cryptogram and the key.

C⊕ K = (M⊕ K)⊕ K = M⊕ (K⊕ K) = M

This works because for any binary string K, K ⊕ K = 0 and the binary addition
is associative, that is, for any binary strings A, B, C of the same length we have
A⊕ (B⊕ C) = (A⊕ B)⊕ C.

In one-time-pads the key is a random sequence of 0’s and 1’s, and therefore the
cryptogram—the plaintext plus the key—is also random and completely scrambled
unless one knows the key. Both the sender and the receiver must have exact copies



INTRODUCTION TO QUANTUM INFORMATION SCIENCE 3

of the key beforehand; the sender needs the key to encrypt the plaintext, the receiver
needs the key to recover the plaintext from the cryptogram. An eavesdropper, who
has intercepted the cryptogram and knows the general method of encryption but
not the key, will not be able to infer anything useful about the original message.
The secrecy of communication depends entirely on the secrecy of the key. If the
key is secret, the same length as the message, truly random, and never reused,
then one-time-pad is unbreakable. However, failure to comply with any of these
requirements may result is serious security breaches. One-time pads are not the The US National Security Agency, in a

project VENONA, managed to decrypt some
of KGB communications because of Soviet’s
reuse of keys in one-time pad encryptions.

most practical ciphers on the planet but, if used properly, they are unbreakable!
Does it solve the problem of perfect security? Well, not quite. There is a snag. All
one-time pads suffer from a serious practical drawback. Can you guess what it is?

0.5.A Boolean functions. From a mathematical perspective a computer is an
abstract machine that evaluates a function

f : {0, 1}n 7→ {0, 1}m, (1)

i.e. given n bits of input it produces m bits of output. Such a function is equivalent
to m functions, each with one-bit, known as Boolean functions,

f : {0, 1}n 7→ {0, 1}. (2)

Thus, one might as well say that computers evaluate Boolean functions. How many
Boolean functions {0, 1}n → {0, 1} can we construct?

0.6.A Complex numbers. Complex numbers have many applications in physics,
however, not until the advent of quantum theory was their ubiquitous and funda-
mental role in the description of the actual physical world so evident. Even today,
their profound link with probabilities appears to be a rather mysterious connec-
tion. Mathematically speaking, the set of complex numbers is a field. This is an
important algebraic structure used in almost all branches of mathematics. You do
not have to know much about algebraic fields to follow these lectures, but still, you
should know the basics. Look them up.

(1) The set of rational numbers and the set of real numbers are both fields, but
the set of integers is not. Why?

(2) What does it mean to say that the field of complex numbers is algebraically
closed?

(3) Evaluate each of the following quantities:

1 + e−iπ , |1 + i|, (1 + i)4 2,
√

i, 2i, ii

(4) Here is a simple proof that +1 = −1:

1 =
√

1 =
√
(−1)(−1) =

√
−1
√
−1 = i2 = −1

What is wrong with it?

0.7.A Quantum computation is a huge quantum interference experiment. Af-
ter we run some calculations on a quantum computer, it can generate a range of
measurement outputs, with M being one of them. To obtain M as the output, the
quantum computer starts calculations in some initial state, then follows n different
computational paths to reach the output M. These n computational paths are fol-
lowed with probability amplitudes 1√

n eikϕ, where ϕ is a fixed angle 0 < ϕ < 2π

and k = 0, 1, · · · n− 1. Show that the probability of generating the output is

1
n

∣∣∣∣1− einϕ

1− eiϕ

∣∣∣∣2 =
1
n

sin2(n ϕ
2
)

sin2( ϕ
2
)
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for 0 < ϕ < 2π and 1 for ϕ = 0. Plot the probability as a function of ϕ. 1 + z + z2 + · · ·+ zn = 1−zn+1
1−z

0.8.A Square root of NOT. Now that we have poked our heads into the quantum
world, let us see how quantum interference challenges conventional logic and leads
to qualitatively different computations. Consider the following task (which we will
return to a few more times in later chapters): design a logic gate that operates on a
single bit such that, when it is followed by another, identical, logic gate, the output
is always the negation of the input. Let us call this logic gate the square root of
NOT, or

√
NOT. A simple check, such as an attempt to construct a truth table, should

persuade you that there is no such operation in logic. It may seem reasonable to
argue that since there is no such operation in logic,

√
NOT is impossible. Think

again!

Figure 1. A computation that, when repeated, gives exactly NOT.
An unlabelled line means that it has probability 1, and the lack of
a line corresponds to having probability 0.

Fig. 1 shows a simple computation, two identical computational steps performed
on two states labelled as 0 and 1, i.e. on one bit. An interplay of constructive
and destructive interference makes some transitions impossible and the result is
the logical NOT. Thus, quantum theory declares, the square root of NOT is possible.
And it does exist! Experimental physicists routinely construct this and many other
“impossible” gates in their laboratories. They are the building blocks of a quantum
computer. Quantum theory explains the behaviour of

√
NOT, hence, reassured by

the physical experiments that corroborate this theory, logicians are now entitled to
propose a new logical operation

√
NOT. Why? Because a faithful physical model for

it exists in nature. Write a 2× 2 matrix which describes the
√
NOT operation. Is there

just one such a matrix? Suppose you are given a supply of Hadamard and phase
gates with tuneable phase settings. How would you construct the

√
NOT gate?

0.9.A Dirac notation. In this course we will use vectors called kets |v〉, linear
functionals called bras 〈u|, inner products 〈u|v〉 which are complex numbers, outer
products |u〉〈v| which are operators, and tensor products |a〉 ⊗ |b〉 which describe
composite systems. Kets can be identified with column vectors, e.g.

|a〉 =
[

α0
α1

]
, |b〉 =

[
β0
β1

]
, |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
.

The adjoint |v〉†, denoted by a dagger, is called a bra vector, or just a bra, and is
written using a mirror image bracket 〈v|. Recall that for any complex matrix A
(row and column vectors can be viewed as matrices) the adjoint A† (also known as
conjugate transpose or Hermitian conjugate) is formed by interchanging rows and
columns and taking complex conjugate of each entry. Thus, in components bras are
always written as row vectors.

(1) Express 〈a|, 〈b|, 〈0| and 〈1| in components as row vectors.

(2) Express the inner product 〈a|b〉 in terms of components of |a〉 and |b〉.
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(3) Show that 〈a|b〉? = 〈b|a〉. What is the interpretation of
√
〈a|a〉?

(4) Explain why the outer product |a〉〈b| is an operator and write a matrix
associated with this operator.

(5) We can think about 〈a| as the linear functional whose value on |b〉 is the
inner product 〈a|b〉. Explain why |a〉〈b| acting on some ket |c〉 gives a vector
that is proportional to |a〉. What is the proportionality constant?

(6) Explain why the composition of two operators, |a〉〈b| followed by |c〉〈d| can
be written as 〈b|c〉 |a〉〈d|

(7) Express |0〉〈0|, |1〉〈1| and |0〉〈0|+ |1〉〈1| in the matrix form.

(8) When |a〉〈a| is a projection operator?

We call |a〉 and |b〉 orthogonal if 〈a|b〉 = 0. Any maximal set of pairwise orthogonal
vectors of unit length forms an orthonormal basis and any vector can be expressed
as a linear combination of the basis vectors. For example, vectors |0〉 and |1〉 form
an orthonormal basis, 〈i|j〉 = δij (the Kronecker delta), and in this basis

|a〉 = α0 |0〉+ α1 |1〉 , |b〉 = β0 |0〉+ β1 |1〉 .

In more abstract terms, bras form the dual vector space. Bras 〈0| and 〈1| form the
dual basis,

〈a| = α?0 〈0|+ α?1 〈1| , 〈b| = β?
0 〈0|+ β?

1 〈1| .
We call {|0〉 , |1〉} the standard or the computational basis. The two kets represent
two logical values, 0 and 1, of a quantum bit, called a qubit. One of the most
useful formula in quantum mechanics – no, this is not an exaggeration – is the
decomposition of the identity. For any orthonormal basis |ek〉 the sum of projectors
∑k |ek〉〈ek| is the identity operator

∑
k
|ek〉〈ek| = 1.

This is because you can insert the identity operator just about anywhere in a for-
mula and the view it as a sum of projectors on any basis of your choice. For
example,

〈a|b〉 = 〈a| 1 |b〉 = 〈a|∑
k
|ek〉〈ek|b〉 = ∑

k
〈a|ek〉 〈ek|b〉 ,

which gives us the inner product in terms of components.

Given an operator A and an orthonormal basis |ek〉 what is the interpretation of
〈ei| A

∣∣ej
〉
? The trace of a square matrix A, denoted tr A is defined to be the sum of

elements on the main diagonal of A. Show that

tr |a〉〈b| = 〈b|a〉 ,

0.10.A Big-O notation. In order to make qualitative distinctions between how
different functions grow we will often use the asymptotic big-O notation. For exam-
ple, suppose an algorithm running on input of size n takes an2 + bn + c elementary
steps, for some positive constants a, b and c. These constants depend mainly on the
details of the implementation and the choice of elementary steps. What we really
care about is that, for large n, the whole expression is dominated by its quadratic
term. We then say that the running time of this algorithm grows as n2, and we
write it as O(n2), ignoring the less significant terms and the constant coefficients.
More precisely, let f (n) and g(n) be functions from positive integers to positive
reals. You may think of f (n) and g(n) as the running times of two algorithms on
inputs of size n. We say f = O(g), which means that f grows no faster than g, f = O(g) is pronounced as “ f is big-oh of

g“.if there is a constant c > 0 such that f (n) ≤ cg(n) for all sufficiently large values
of n. Essentially, f = O(g) is a very loose analogue of f ≤ g. In addition to the
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big-O notation, computer scientists often use Ω for lower bounds: f = Ω(g) means
g = O( f ). Again, this is a very loose analogue of f ≥ g.

(1) When we say that f (n) = O(log n), why don’t we have to specify the base
of the logarithm?

(2) Let f (n) = 5n3 + 1000n + 50. Is f (n) = O(n3), or O(n4), or both?

(3) Which of the following statements are true?

(a) nk = O(2n) for any constant k

(b) n! = O(nn)

(c) if f1 = O(g) and f2 = O(g), then f1 + f2 = O(g).

0.11.A Number of paths. A quantum machine has N perfectly distinguishable
configurations. What is the maximum number of computational paths connecting
a specific input with a specific output after k steps of the machine? Suppose you
are using your laptop to add together amplitudes pertaining to each of the paths.
As k and N increase you may need more time and more memory to complete the
task. How does the execution time and the memory requirements grow with k and
N? Will you need more time or more memory or both?

0.12.A It is all about computational complexity. In order to solve a particular
problem, computers (classical or quantum) follow a precise set of instructions —
an algorithm. Computer scientists quantify the efficiency of an algorithm according
to how rapidly its running time, or the use of memory, increases when it is given
ever larger inputs to work on. An algorithm is said to be efficient if the number
of elementary operations taken to execute it increases no faster than a polynomial
function of the size of the input. We take the input size to be the total number of
binary digits (bits) needed to specify the input. For example, using the algorithm
taught in elementary school, one can multiply two n digit numbers in a time that
grows like the number of digits squared, n2. In contrast, the fastest-known method
for the reverse operation — factoring an n-digit integer into prime numbers — takes
a time that grows exponentially, roughly as 2n. That is considered inefficient. input size n

execution time

2n n2

polynomial
is good

exponential
is bad

Explain why the technological progress alone, such as increasing the speed of clas-
sical computers, will never turn an inefficient algorithm (exponential scaling) into
an efficient one (polynomial scaling).

0.13.A Complexity classes. The class of problems that can be solved by a de-
terministic computer in polynomial time is represented by the capital letter P, for
polynomial time. The class of problems that can be solved in polynomial time by a
probabilistic computer is called BPP, for bounded-error probabilistic polynomial time.
Finally, the complexity class BQP, for bounded-error quantum polynomial, is the class

P

BPP

BQP

of problems that can be solved in polynomial time by a quantum computer. Provide
few examples of problems in P. Any problems which are in BPP but not known to
be in P? How about problems which are in BQP but not known to be in BPP?

0.14.A Primality testing. Given a positive integer N, how can we efficiently Primality used to be given as the classic
example of a problem in BPP (in co-RP to be
more precise) but not in P. However, in 2002
a deterministic polynomial time test for
primality was proposed by Manindra
Agrawal, Neeraj Kayal, and Nitin Saxena.
Thus, since 2002, primality has been in P.

determine whether N is prime or not? There exists a randomised algorithm – the
Miller-Rabin test – which can determine whether a given number N is prime, but
with 1-sided error. If N is prime the algorithm will always correctly output yes,
and if N is composite the algorithm will correctly output no with probability at
least 3/4. Thus the probability the test returns yes when N is not prime is ε,
which is not greater than 1/4. In practical implementations, one performs several
iterations of the Miller-Rabin test, and if they all return yes, conclude that N is
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“probably prime”. Suppose you run the algorithm (for the same N) r times and
each time the algorithm returns yes. What is the probability that N is not prime?
Solve this problem assuming that it is equally likely that the number N you were
given is prime or composite. If you feel like going for a more realistic scenario solve
the problem assuming that the number N was chosen randomly from the interval
[1, e1000]. In the latter case you will have to use the prime number theorem (look it
up).

0.15.A Chernoff bound. Suppose a randomised algorithm solves a decision
problem, returning yes or no answers. It gets the answer wrong with a probability
1
2 − δ, where δ > 0 is a constant. If we are willing to accept a probability of error no
larger than ε, then it suffices to run the computation r times, where r = O(log 1/ε).

Figure 2. Comparison between a linear function and an exponen-
tial function.

(1) If we perform this computation r times, how many possible sequences of
outcomes are there?

(2) What is the probability of any particular sequence with w wrong answers.

(3) If we look at the set of r outcomes, we will determine the final outcome by
performing a majority vote. This can only go wrong if w > r/2. Give an
upper bound on the probability of any single sequence that would lead us
to the wrong conclusion.

(4) Using the bound 1− x ≤ e−x, conclude that the probability of our coming
to the wrong conclusion is upper bounded by e−2rδ2

.


