
Problem Sheet 1
Hilary TermINTRODUCTION TO QUANTUM INFORMATION SCIENCE

ARTUR EKERT & ZHENYU CAI

Questions Label: A - Bookwork B - Standard C - Challenging/Optional

1.1.A Omnipresent Wolfgang Pauli and his ubiquitous matrices. The three Pauli
matrices σ1 ≡ σx ≡ X, σ2 ≡ σy ≡ Y, and σ3 ≡ σz ≡ Z, here supplemented by the
identity matrix σ0 ≡ 1, are written in the standard basis {|0〉 , |1〉} as The Pauli matrices are unitary as well

as Hermitian. They square to the iden-
tity

X2 = Y2 = Z2 = 1.
They anticommute

XY + YX = 0,
XZ + ZX = 0,
YZ + ZY = 0,

and satisfy
XY = iZ,
YZ = iX,
ZX = iY.

Their trace is zero and their determi-
nant is −1.

1 =

[
1 0
0 1

]
X =

[
0 1
1 0

]
bit flip

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
phase flip

(1) Find eigenvalues and eigenvectors of the three Pauli matrices.

(2) The two Pauli gates, X and Z, are often referred to as the bit flip and
the phase flip respectively; we will use this terminology later on, when
we discuss quantum error correction. Show that the Hadamard gate H =

1√
2
(X + Z) turns phase flips into bit flips, HZH = X,

H Z H = X

and bit flips into phase flips HXH = Z,

H X H = Z
The set of complex N × N matrices form a
Hilbert space with the inner product
(A|B) = 1

N Tr A† B. This inner product is
often called the Hilbert-Schmidt product.

(3) Given that any 2× 2 complex matrix A can be written in the basis of the
identity plus the three Pauli matrices as:

Here vector~a has components ax , ay , az and
~σ = (σx , σy , σz).

A = a01 +~a ·~σ ≡ a01 + axσx + ayσy + azσz,

show that the coefficients ak are given by the inner products ak = (σk|A) =
1
2 Tr σk A. If A is Hermitian then these coefficients are real numbers. Why?

1.2.A Pauli group. The three Pauli matrices and the identity form a group under
multiplication for when we multiply two Pauli matrices we get another Pauli ma-
trix... well, almost. Explain why the full one-qubit Pauli group P1 has 16 elements:

±1,±X,±Y,±Z,±i1,±iX,±iY,±iZ.

Show that 〈i1, X, Z〉 is a generating set of this group.

1.3.A Get stabilized. We say that a unitary S stabilizes |ψ〉 if S |ψ〉 = |ψ〉. We will use stabilizers to define vectors and
vectors subspaces. Right now it may look
like an unnecessary complication, but bear
with us...

(1) Show that the set of stabilizers of |ψ〉 forms a group (known as the stabiliser
group).

(2) Which states are stabilized by the Pauli matrices X, Y, Z and which by −X,
−Y and −Z? Which states are stabilized by the identity 1 and which by −1?
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(3) What are the stabilizer groups of the computational basis states, |0〉 and |1〉?

1.4.A The golden circuit. Here is a single qubit interference represented by the This exercise is important. It really is.
Honestly, if you do not understand this
circuit you will not get much out of this
course.

Hadamard – phase shift – Hadamard circuit. What is the role of the first Hadamard
gate, the phase shift gate and the second Hadamard gate?

ϕ|0〉 H H

Step through the execution of this circuit and write down the state of the qubit at
each stage of the computation. Comment on a special case of ϕ = π.

1.5.B Just Hadamard and Phase. You are given an unlimited supply of the
Hadamard and the phase gates

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
.

How would you implement S† and the three Pauli gates?

1.6.B You know Wolfgang Pauli, now meet William Clifford. Clifford group Clifford normalizes Pauli. If this makes no
sense to you, please look up centralizers and
normalizers.on a single qubit, Cl1, is the group of unitaries generated by the Hadamard and S

gates: Cl1 = 〈H, S〉.

(1) Show that, under conjugation, Clifford gates C ∈ Cl1 map Pauli operators
to Pauli operators: CPC† = P′ (modulo phase factors), where P and P′ are
two Pauli operators. In other words, the Clifford group is defined as the
group of unitaries that normalize the Pauli group.

(2) Explain why any circuit composed only of the single qubit Clifford gates
maps the set of Pauli eigenstates to the set of Pauli eigenstates.

1.7.B Tensor products of Pauli operators. A 2-qubit Pauli operator is a tensor
product of any two Pauli operators (1, X, Y, Z) with pre-factor +1 or −1. Using the Given some operators Ui , Vi and some

scalars λi , we know the following properties
of the tensor products of operators:
(U1 ⊗U2)† = U†

1 ⊗U†
2

λ1U1 ⊗ λ2U2 = (λ1λ2)(U1 ⊗U2)
(U1 ⊗U2)(V1 ⊗V2) = U1V1 ⊗U2V2

properties of single-qubit Pauli-operator in Question 1.1 show that all 2-qubit Pauli
operators have the following properties

(1) They are both unitary and Hermitian.

(2) They are self-inverse and have eigenvalues ±1.

(3) Any two operators either commute or anticommute.

Similar arguments can be extended to n-qubit Pauli operator. Now consider the
following two 10-qubit Pauli operators

X⊗ X⊗ 1⊗ Z⊗ 1⊗Y⊗ Z⊗ 1⊗ Z⊗ Z
X⊗Y⊗ X⊗ 1⊗ 1⊗Y⊗ X⊗ 1⊗ Z⊗ X

(4) Do they commute or anticommute? There is a simple rule that allows to
answer this question immediately, without any algebra. Can you see it?

1.8.B Unitary evolution vs Hamiltonian for independent subsystems. If sub- Hint: Over an infinitely small time interval
dt, the subsystems evolve by U1 = 1− iH1dt
and U2 = 1− iH2dt, respectively.system S1 undergoes a unitary transformation U1 and subsystem S2 undergoes a

transformation U2, then the overall unitary evolution is described by the operator
U1 ⊗U2. Now, suppose that both subsystems evolve continuously in time and are
characterised by the Hamiltonians H1 and H2. What is the overall Hamiltonian?

1.9.B The Quantum Bomb Tester. You have been drafted by the government to help This is a slightly modified version of a bomb
testing problem described by Avshalom
Elitzur and Lev Vaidman in
Quantum-mechanical interaction-free
measurement, Found. Phys. 47, 987-997
(1993).

in the demining effort in a former war-zone. In particular, retreating forces have left
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very sensitive bombs in some of the sealed rooms. The bombs are configured such
that if even one photon of light is absorbed by the fuse (i.e. if someone looks into
the room), the bomb will go off. Each room has an input and output port which can
be hooked up to external devices. An empty room will let light go from the input
to the output ports unaffected, whilst a room with a bomb will explode if light is
shone into the input port and the bomb absorbs even just one photon.

empty

Your task is to find a way of determining whether a room has a bomb in it without
blowing it up, so that specialised (limited and expensive) equipment can be devoted

bomb

to defusing that particular room. You would like to know with certainty whether a
particular room had a bomb in it.

(1) To start with, consider the setup (see the margin) where the input and out-
put ports are hooked up in the lower arm of a Mach-Zehnder interferometer
(with symmetric beam splitters).

(a) Assume an empty room. Send a photon to input port |0〉. Which de-
tector, at the output port, will register the photon?

(b) Now assume that the room does contain a bomb. Again, send a photon
to input port |0〉. Which detector will register the photon and with
which probability?

(c) Design a scheme that allows you – at least part of the time – to decide
whether a room has a bomb in it without blowing it up. If you iterate
the procedure, what is its overall success rate for the detection of a
bomb without blowing it up? Hint: Consider the setup where the input

and output ports are hooked up in one of
the arms of a Mach-Zehnder interferometer.

|0〉

|1〉

0

1

(2) Assume that the two beam splitters in the interferometer are different. Say
the first beamsplitter reflects incoming light with probability r and transmits
with probability t = 1− r and the second one transmits with probability r
and reflects with probability t. Would the new setup improve the overall
success rate of the detection of a bomb without blowing it up?

(3) There exists a scheme, involving many beamsplitters and something called
“quantum Zeno effect”, such that the success rate for detecting a bomb
without blowing it up approaches 100%. Try to work it out or find a solution
on internet.


