
Problem Sheet 1
Hilary TermINTRODUCTION TO QUANTUM INFORMATION SCIENCE

ARTUR EKERT & ZHENYU CAI

Questions Label: A - Bookwork B - Standard C - Challenging/Optional

1.1.A Omnipresent Wolfgang Pauli and his ubiquitous matrices. The three Pauli
matrices σ1 ≡ σx ≡ X, σ2 ≡ σy ≡ Y, and σ3 ≡ σz ≡ Z, here supplemented by the
identity matrix σ0 ≡ 1, are written in the standard basis {|0〉 , |1〉} as The Pauli matrices are unitary as well

as Hermitian. They square to the iden-
tity

X2 = Y2 = Z2 = 1.
They anticommute

XY + YX = 0,
XZ + ZX = 0,
YZ + ZY = 0,

and satisfy
XY = iZ,
YZ = iX,
ZX = iY.

Their trace is zero and their determi-
nant is −1.

1 =

[
1 0
0 1

]
X =

[
0 1
1 0

]
bit flip

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
phase flip

(1) Find eigenvalues and eigenvectors of the three Pauli matrices.

(2) The two Pauli gates, X and Z, are often referred to as the bit flip and
the phase flip respectively; we will use this terminology later on, when
we discuss quantum error correction. Show that the Hadamard gate H =

1√
2
(X + Z) turns phase flips into bit flips, HZH = X,

H Z H = X

and bit flips into phase flips HXH = Z,

H X H = Z
The set of complex N × N matrices form a
Hilbert space with the inner product
(A|B) = 1

N Tr A† B. This inner product is
often called the Hilbert-Schmidt product.

(3) Given that any 2× 2 complex matrix A can be written in the basis of the
identity plus the three Pauli matrices as:

Here vector~a has components ax , ay , az and
~σ = (σx , σy , σz).A = a01 +~a ·~σ ≡ a01 + axσx + ayσy + azσz,

show that the coefficients ak are given by the inner products ak = (σk|A) =
1
2 Tr σk A. If A is Hermitian then these coefficients are real numbers. Why?

Solution:

(1) Eigenvalues are ±1 as the Pauli matrices square to 1 (the 2 × 2 identity
matrix).

Eigenvectors:
σx: |±〉 = 1√

2
(|0〉 ± |1〉)

σy: |±i〉 = 1√
2
(|0〉 ± i |1〉)

σx: |0〉 , |1〉
1
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(2) Recalling that σ2
j = 1 and {σj, σl} = 2δjl1, we find

1√
2
(X + Z)Z

1√
2
(X + Z) =

1
2
(XZX + XZ2 + Z2X + Z3) =

1
2
(−Z + X + X + Z) = X

1√
2
(X + Z)X

1√
2
(X + Z) =

1
2
(X3 + X2Z + ZX2 + ZXZ) =

1
2
(X + Z + Z− X) = Z

(3) For any two Pauli matrices, (σj|σl) =
1
2 tr
(
σjσm

)
= δjm. Then,

(σk|A) =
1
2

tr(σk A) =
1
2

tr

(
3

∑
m=1

σkamσm

)
=

3

∑
m=1

am
1
2

tr (σkσm) =
3

∑
m=1

amδkm = ak .

For the adjoint A† we have A† = ∑3
m=1 a∗mσm. Hence, for an Hermitian A, it

follows that a∗k = (σk|A†)
A is Hermitian

= (σk|A) = ak. Hence, ak is real.

1.2.A Pauli group. The three Pauli matrices and the identity form a group under
multiplication for when we multiply two Pauli matrices we get another Pauli ma-
trix... well, almost. Explain why the full one-qubit Pauli group P1 has 16 elements:

±1,±X,±Y,±Z,±i1,±iX,±iY,±iZ.

Show that 〈i1, X, Z〉 is a generating set of this group.

Solution: Can be easily verified using

XY = −YX = iZ
YZ = −ZY = iX
ZX = −XZ = iY.

How does 〈i1, X, Z〉 generates the full single-qubit Pauli group? If we multiply X
and Z, we will get Y modulo phase. Now taking i1 to different powers will give us
all the phase factors ±i1 and ±1 to be added in front of the X, Y, Z, which give us
the full group.

1.3.A Get stabilized. We say that a unitary S stabilizes |ψ〉 if S |ψ〉 = |ψ〉. We will use stabilizers to define vectors and
vectors subspaces. Right now it may look
like an unnecessary complication, but bear
with us...

(1) Show that the set of stabilizers of |ψ〉 forms a group (known as the stabiliser
group).

(2) Which states are stabilized by the Pauli matrices X, Y, Z and which by −X,
−Y and −Z? Which states are stabilized by the identity 1 and which by −1?

(3) What are the stabilizer groups of the computational basis states, |0〉 and |1〉?

Solution:

(1) Denoting the set of elements that stabilise the state |ψ〉 as S:

S = {S ∈ U | S |ψ〉 = |ψ〉}
where U is the unitary group. To show that S forms a group under matrix
multiplication, we look at the following.

• Associativity: Matrix multiplication is associative.

• Identity: We have 1 |ψ〉 = |ψ〉. Hence, 1 ∈ S.

• Inverse: For all S ∈ S, we have S−1 |ψ〉 = S−1S |ψ〉 = |ψ〉. Hence,
S ∈ S⇒ S−1 ∈ S.
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• Closure: For all S, S′ ∈ S, we have SS′ |ψ〉 = S |ψ〉 = |ψ〉. Hence,
S, S′ ∈ S⇒ SS′ ∈ S.

(2) Using the notations in Q1.1(1), the stabilised states of different operators
are:

X : |+〉 , −X : |−〉
Y : |+i〉 , −Y : |−i〉
Z : |0〉 , −Z : |1〉
1 : all states, −1 : no states

(3) The stabilizer groups of the computational basis states, if restricting only to
Pauli operators, are:

|0〉 : {1, Z} |1〉 : {1,−Z}.
More generally if we allow for any unitary operators, we have:

|0〉 :
(

1 0
0 eiθ

)
|1〉 :

(
eiθ 0
0 1

)
.

for any angle θ.

1.4.A The golden circuit. Here is a single qubit interference represented by the This exercise is important. It really is.
Honestly, if you do not understand this
circuit you will not get much out of this
course.

Hadamard – phase shift – Hadamard circuit. What is the role of the first Hadamard
gate, the phase shift gate and the second Hadamard gate?

ϕ|0〉 H H

Step through the execution of this circuit and write down the state of the qubit at
each stage of the computation. Comment on a special case of ϕ = π.

Solution: See Sec. 2.4 of the online book.

1.5.B Just Hadamard and Phase. You are given an unlimited supply of the
Hadamard and the phase gates

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
.

How would you implement S† and the three Pauli gates?

Solution: Similar to how H gates enable the transformation between X and Z:

HXH = Z, HZH = X,

S gates enable the transformation between X and Y:

SXS† = Y, S†YS = X.

We can compile S† and Z simply using S:

S† = S3, Z = S2

Then we can transform Z into X and Y using H and S:

X = HZH = HS2H, Y = SXS† = SHS2HS3.

Note that there are also other ways for compilation that is correct up to the global
phases, e.g.

Y = iXZ = iHS2HS2.

https://qubit.guide/2.4-single-qubit-interference.html
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1.6.B You know Wolfgang Pauli, now meet William Clifford. Clifford group Clifford normalizes Pauli. If this makes no
sense to you, please look up centralizers and
normalizers.on a single qubit, Cl1, is the group of unitaries generated by the Hadamard and S

gates: Cl1 = 〈H, S〉.

(1) Show that, under conjugation, Clifford gates C ∈ Cl1 map Pauli operators
to Pauli operators: CPC† = P′ (modulo phase factors), where P and P′ are
two Pauli operators. In other words, the Clifford group is defined as the
group of unitaries that normalize the Pauli group.

(2) Explain why any circuit composed only of the single qubit Clifford gates
maps the set of Pauli eigenstates to the set of Pauli eigenstates.

Solution:

(1) Using the results in Question 1.5, adding onto the fact that HYH = −Y and
SZS† = Z, we can see that conjugation using H and S will simply transform
one Pauli operator into another Pauli operator modulo phase.

Since H and S are the generators of the Clifford group, any Clifford oper-
ators can be written as a product of H and S. Hence, conjugating a Pauli
operator using a Clifford operator can be viewed as multiple rounds of con-
jugations using H and S, which will only map one Pauli operator into an-
other Pauli at every round and end up with a Pauli operator at the end
(modulo phase).

(2) Given a state |ψ〉 is the ±1-eigenstate of the Pauli operator P, we have

P |ψ〉 = ± |ψ〉 . (1)

Given a Clifford gate C that will transform the Pauli operator P into another
Pauli operator P′, we have:

CPC† = P′ ⇒ CP = P′C.

Applying C to Eq. (1), we have

CP |ψ〉 = ±C |ψ〉
P′C |ψ〉 = ±C |ψ〉

i.e. C |ψ〉 is the eigenstate of the Pauli operator P′.

1.7.B Tensor products of Pauli operators. A 2-qubit Pauli operator is a tensor
product of any two Pauli operators (1, X, Y, Z) with pre-factor +1 or −1. Using the Given some operators Ui , Vi and some

scalars λi , we know the following properties
of the tensor products of operators:
(U1 ⊗U2)† = U†

1 ⊗U†
2

λ1U1 ⊗ λ2U2 = (λ1λ2)(U1 ⊗U2)
(U1 ⊗U2)(V1 ⊗V2) = U1V1 ⊗U2V2

properties of single-qubit Pauli-operator in Question 1.1 show that all 2-qubit Pauli
operators have the following properties

(1) They are both unitary and Hermitian.

(2) They are self-inverse and have eigenvalues ±1.

(3) Any two operators either commute or anticommute.

Similar arguments can be extended to n-qubit Pauli operator. Now consider the
following two 10-qubit Pauli operators

X⊗ X⊗ 1⊗ Z⊗ 1⊗Y⊗ Z⊗ 1⊗ Z⊗ Z
X⊗Y⊗ X⊗ 1⊗ 1⊗Y⊗ X⊗ 1⊗ Z⊗ X

(4) Do they commute or anticommute? There is a simple rule that allows to
answer this question immediately, without any algebra. Can you see it?

Solution: We will use U = λP1 ⊗ P2 throughout this section, with λ = ±1 and
P1, P2 ∈ {1, X, Y, Z}.
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(1) Remember that we have seen in Question 1.1 that all single-qubit Pauli op-
erators are unitary P†P = 1 and Hermitian P† = P. Using this and the
fact that λ = ±1, we can now looking at two-qubit Pauli operators on the
following properties:

Unitarity:

U†U = (λP1 ⊗ P2)
† (λP1 ⊗ P2) = |λ|2

(
P†

1 P1

)
⊗
(

P†
2 P2

)
= 1⊗ 1

Hermiticity:

U† = (λP1 ⊗ P2)
† = λ∗P†

1 ⊗ P†
2 = λP1 ⊗ P2 = U.

(2) Self-inverse, i.e., involution operators: U2 = 1, follows directly from unitar-
ity and Hermiticity.

Eigenvalues: follows immediately from self-inverse that the eigenvalues
must be ±1.

(3) Take two elements P, Q of the set {1, X, Y, Z}. Then one of two things will
happen:

• If P = Q or one of them is the identity 1, then PQ = QP (they com-
mute).

• Otherwise, it must be that P and Q are two different Pauli matrices, in
which case PQ = −QP (they anticommute).

We can thus generally write PQ = ηQP, with η = ±1 depending on whether
P, Q commute (+1) or anticommute (−1).

Now take two different 2-qubit Pauli operators UP = λPP1 ⊗ P2 and UQ =
λQQ1 ⊗Q2 and study their commutation relationship, we have:

UPUQ = λPλQ (P1Q1)⊗ (P2Q2) = λQλP (η1Q1P1)⊗ (η2Q2P2)

= η1η2λQλP (Q1P1)⊗ (Q2P2) = η1η2UQUP.

It follows that UPUQ = ±UQUP, i.e. UP and UQ either commute or anti-
commute.

Whether UP and UQ commute or anticommute is determined by how many
ηj equal −1:

• Odd number of ηj equal to −1, i.e. an odd number of anticommuting
pairs (Pj, Qj) ⇒ η1η2 = −1 ⇒ UP and UQ anticommute.

• Otherwise, UP and UQ commute

Similar arguments can be applied to n-qubit Pauli operators as suggested in
the question with η1η2 replaced by ∏j ηj.

(4) Do the given 10-qubit Pauli operators commute or anticommute? Building on
the last question, we have three ηj = −1 (j = 2, 7, 10), i.e. an odd num-
ber of single-qubit Pauli pairs anti-commute, hence the two 10-qubit Pauli
operators anticommute.

1.8.B Unitary evolution vs Hamiltonian for independent subsystems. If sub- Hint: Over an infinitely small time interval
dt, the subsystems evolve by U1 = 1− iH1dt
and U2 = 1− iH2dt, respectively.system S1 undergoes a unitary transformation U1 and subsystem S2 undergoes a

transformation U2, then the overall unitary evolution is described by the operator
U1 ⊗U2. Now, suppose that both subsystems evolve continuously in time and are
characterised by the Hamiltonians H1 and H2. What is the overall Hamiltonian?
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Solution: As the two subsystems are independent, the evolution of the composite
system follows from the tensor product of the two evolution operators:

Utot = U1 ⊗U2 = (11 − iH1dt)⊗ (12 − iH2dt)

= 11 ⊗ 12 − i (H1 ⊗ 12) dt− i (11 ⊗ H2) dt + O(dt2)

= 11 ⊗ 12 − i (H1 ⊗ 12 + 11 ⊗ H2) dt + O(dt2)

Compare against Utot = 1tot − iHtotdt, we see that the overall Hamiltonian —i.e.,
the generator of the evolution of the composite system— is

Htot ≡ H1 ⊗ 12 + 11 ⊗ H2

More generally, if we have two operators A and B commute with each other:
[A, B] = 0, then we have: Search for Baker–Campbell–Hausdorff

formula for the general case when A and B
might not commute.eAeB = eA+B.

With A = i(H1 ⊗ 12)t and B = i(11 ⊗ H2)t, we then have:

ei(H1⊗12)t︸ ︷︷ ︸
U1⊗12

ei(11⊗H2)t︸ ︷︷ ︸
11⊗U2

= ei(H1⊗12+11⊗H2)t︸ ︷︷ ︸
Utot=U1⊗U2

We can see that the Hamiltonian for the evolution operator Utot is simply Htot =
H1 ⊗ 12 + 11 ⊗ H2.

1.9.B The Quantum Bomb Tester. You have been drafted by the government to help This is a slightly modified version of a bomb
testing problem described by Avshalom
Elitzur and Lev Vaidman in
Quantum-mechanical interaction-free
measurement, Found. Phys. 47, 987-997
(1993).

in the demining effort in a former war-zone. In particular, retreating forces have left
very sensitive bombs in some of the sealed rooms. The bombs are configured such
that if even one photon of light is absorbed by the fuse (i.e. if someone looks into
the room), the bomb will go off. Each room has an input and output port which can
be hooked up to external devices. An empty room will let light go from the input
to the output ports unaffected, whilst a room with a bomb will explode if light is
shone into the input port and the bomb absorbs even just one photon.

empty

Your task is to find a way of determining whether a room has a bomb in it without
blowing it up, so that specialised (limited and expensive) equipment can be devoted

bomb

to defusing that particular room. You would like to know with certainty whether a
particular room had a bomb in it.

(1) To start with, consider the setup (see the margin) where the input and out-
put ports are hooked up in the lower arm of a Mach-Zehnder interferometer
(with symmetric beam splitters).

(a) Assume an empty room. Send a photon to input port |0〉. Which de-
tector, at the output port, will register the photon?

(b) Now assume that the room does contain a bomb. Again, send a photon
to input port |0〉. Which detector will register the photon and with
which probability?

(c) Design a scheme that allows you – at least part of the time – to decide
whether a room has a bomb in it without blowing it up. If you iterate
the procedure, what is its overall success rate for the detection of a
bomb without blowing it up? Hint: Consider the setup where the input

and output ports are hooked up in one of
the arms of a Mach-Zehnder interferometer.

|0〉

|1〉

0

1

(2) Assume that the two beam splitters in the interferometer are different. Say
the first beamsplitter reflects incoming light with probability r and transmits
with probability t = 1− r and the second one transmits with probability r
and reflects with probability t. Would the new setup improve the overall
success rate of the detection of a bomb without blowing it up?
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(3) There exists a scheme, involving many beamsplitters and something called
“quantum Zeno effect”, such that the success rate for detecting a bomb
without blowing it up approaches 100%. Try to work it out or find a solution
on internet.

Solution: General set up of the problem:

As we can see from the figure on the right, our qubit state is define by the two light
paths, with the blue path representing |0〉 and the orange path representing |1〉. We
will use D0 and D1 to denote the two detectors at the end that measure whether
the photon is at the |0〉 path or |1〉 path. If we input the photon from the |0〉 port as
shown, the it will stay on the |0〉 path and get detected at the end by D0.

|0⟩

|1⟩

0

1

“Click”

No detection

This is a set-up without any gates in it. Now we are going to add beam-splitters
into the set-up which act as gates operating on our quantum state.

(1) (a) No bombs:

A 50/50 beam splitter will turn an incoming photon into equal super-
position of the transmitted and reflected photon. It matrix represen-
tation using our definition of “light path” qubits above is given in the
lecture note as

B =
1√
2

(
1 i
i 1

)
.

Let us consider the case in which there is no bombs, and we add two
50/50 beam splitters into the circuit as shown on the right.

The full circuit with two 50/50 beam-splitters is then:

B2 = iX

i.e. it will flip the input.

|0⟩

|1⟩

0

1

With input state |0〉, the output state is simply

B2 |0〉 = iX |0〉 ≡ |1〉

Hence, we will measure |1〉 with 100% probability.

Physically the photon can travel from the |0〉 input to the D1 via two
equivalent paths (two transmissions and one mirror reflection), and
hence the corresponding amplitudes interfere constructively. On the
other hand, the pathways leading to the D0 differ by a phase shift of π,
and hence they interfere destructively.

(b) With bombs:

If there is a bomb in one of the arms of the interferometer, it will act
like a measuring device, causing us to know which arm the photon has
travelled through or not. With 50% probability the photon will pass
through and hit the bomb, causing it to explode. The rest of the time,
the photon will be reflected on the first beam splitter and go on to hit
the second beam splitter, and then be detected in either detector with
50% probability. The probability to detect the photon at D0 (D1) is thus
given by 1/4.

|0⟩

|1⟩

0

1
Explosion

(c) If we measure a photon at D0, we know for certain that

• the bomb did not explode since we detect the photon;

• the bomb must be in the room because otherwise the photon
would be measured at D1
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Observing a photon at D0 thus allows us to detect the bomb without
exploding it!

On the other hand, measuring a photon at D1 can happen in both the
cases of no bombs and with bombs. Hence, if we measure a photon at
D1, we are uncertain about whether there is a bomb and we will repeat
our experiment.

The overall scheme if there is a bomb is given by:
Pboom = 1

2 BOOM, terminate

Pidle = 1
2 bomb idle

{
PD0 = 1

4 measure |0〉 → bomb detected, terminate.
PD1 = 1

4 measure |1〉 → uncertian, repeat.

At each repeat we have Pboom = 1
2 probability of setting off the bomb

and PD0 = 1
4 probability of detecting the bomb.

In the limit of infinity trials, we will terminate in one of the two out-
comes above. The probability of the two terminating options is deter-
mined by their relative probability. Hence, the probability of the bomb
being successfully detected if it exists is:

PD0

Pboom + PD0
=

1
4

1
2 + 1

4
=

1
3

.

On average, two out of three bombs will explode and one will be de-
tected successfully.

If the room is empty, we always detect the photon at D1 and the scheme
does not terminate. The probability for the detection of k successive
photons at D1 in the presence of a bomb is (1/4)k. For sufficiently
large k we can thus conclude that it is highly unlikely to have a bomb
in the room and terminate the iteration.

(2) Can we do any better with beam splitters beyond the 50/50 type?

More general beam-splitters will have a transmission probability T and a
reflection probability R = 1− T if we measure right after the beam splitter.
The matrix form (gate form) of such a general beam splitter is given in Sec.
3.2 of the lecture notes as:

B =
√

T (|0〉 〈0|+ |1〉 〈1|) + i
√

R (|0〉 〈1|+ |1〉 〈0|) =
(√

T i
√

R
i
√

R
√

T

)
(2)

Now we will replace the two 50/50 beam-splitters in our set-up with one
that has T = t and another that has T = r = 1− t:

B1 =

(√
t i
√

r
i
√

r
√

t

)
B2 =

(√
r i
√

t
i
√

t
√

r

)
.

In such a case, following similar arguments as before, we then have:

• No bombs:

With input state |0〉, our circuit is simply

B1B2 |0〉 = iX |0〉 ≡ |1〉

Hence, we will measure |1〉 with 100% probability.

• With bombs:
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The bomb act as a detector that essentially perform a measurement
after the first beam-splitter. Overall, we have:

Pboom = t BOOM, terminate

Pidle = r bomb idle

{
PD0 = rt measure |0〉 → bomb detected, terminate.
PD1 = r2 measure |1〉 → uncertian, repeat.

At each repeat we have Pboom = t probability of setting off the bomb
and PD0 = rt probability of detecting the bomb.

In the limit of infinity trials, we will terminate in one of the two out-
comes above. The probability of the two terminating options is deter-
mined by their relative probability. Hence, the probability of terminat-
ing in the bomb being successfully detected is

PD0

Pboom + PD0
=

rt
t + rt

=
r

1 + r
.

To maximise the probability of detecting the bomb, we have r → 1, and
r

1+r →
1
2 . Note that, this also means the probability of termination in

each run is infinitesimal and we require infinite trials to terminate. i.e.
most of the measurement will end in the ‘useless’ |1〉.

(3) In order to further improve our set-up, we will now probe the bomb multiple
times rather than just once as shown on the right.

The matrix representation of the beam splitter in Eq. (2) can also be written
as:

|0⟩

|1⟩

0

1
BOMB ROOM

Bθ =

(
cos θ i sin θ
i sin θ cos θ

)
= 1 cos θ + iX sin θ = eiθX . (3)

where T = cos2 θ and R = 1− T = sin2 θ.

The number of beam-splitters we will use in our set-up is some even number
N, and all of them will be beam-splitters with θ = π

2N + π
2 .

• No bombs:

Our circuit is simply

BN
θ = eiNθX = 1 cos(Nθ) + iX sin(Nθ)

We have

Nθ =
π

2
+ N

π

2
= (n +

1
2
)π

for some integer n since N is a even number. Hence,

BN
θ = 1 cos(Nθ) + iX sin(Nθ) ∝ X

Therefore, like before the whole circuit is simply equivalent to an X
gate in the absence of a bomb, so that the light path will interfere and
always output |1〉 when the input is |0〉.

• With bombs:

Like before, the existence of the bomb will destroy the interference and
allow the setup to output |0〉. To output |0〉, the photon need to take
the no-bomb-room path (all reflection for all N beam splitter) before
arriving at the last beam-splitter. Hence, the probability of outputting
0 and thus detect the bomb without explosion is:

PD0 = RN = sin2N(θ) == sin2N
( π

2N
+

π

2

)
= cos2N

( π

2N

)
.
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In the limit of large N it becomes:

PD0 =

(
1− 1

2

( π

2N

)2
+O(N−4)

)2N

≈ 1− π2

4N
+O(N−2)

which can approach 1 when N → ∞.

Hence, using our set-up with N → ∞, we will always measure |0〉 when
there is a bomb and always measure |1〉when there are no bombs. Hence we
have a way of distinguishing the two possibilities perfectly without causing
the bomb to explode!

At large N, we have T → 0, R → 1. Hence, each measurement by the
bomb after the beam-splitter will have very high probability of projecting
the photon into the reflected paths. Hence, such constant measurements
will keep projecting the photon into reflected path and prevent the photon
into drifting into the transmitted path that set off the bomb, thus it is related
to Zeno effect.

Additional insights:

Okay, the maths checks out, but it still seems a bit counter-intuitive that we have
detected the bomb without hitting it with a photon. How exactly do we manage it?
Let us look back at the set-up in the cases of no bombs and with bombs:

• No bombs: All beam splitters will take the incoming light beam and take
it into a superposition of the transmitted and reflected beams, i.e. the entire
system without bombs is quantum mechanical such that the interference between
the two light paths can happen and always output 1.

• With bombs: All beam splitters are followed by detectors (including the
bomb) which will destroy their quantum mechanical property, and turn each
of them into a device that inserts a mirror with some probability (reflection)
and do nothing otherwise (transmission). Such a device is completely clas-
sical, and hence the entire system with bombs is classical. In this classical set-up
we can sometimes measure 0 through multiple reflection.

We are NOT trying to directly detect the bomb by hitting it with photon. The mere
presence of the bomb without any photon hitting it will already turn the whole system from
entirely quantum to entirely classical.

Hence, our set-up is for detecting whether the system (the beam splitter inside) is
quantum or classical, which will in turn inform us about whether there is a bomb
or not.

More generally, the bomb is just a detector, our question turns into, can we know
that whether there is a detector present without setting off the detector? The answer
is yes, and the way we do this is making use of the fact that a detector will destroy
interference by its mere presence even without interacting with the particle. Hence, we can
map the question of whether there is a detector or not to whether we have observe
a interference pattern or not. This is very much in the same spirit as the double slit
experiment.

Note: The original idea for the quantum bomb tester goes back to A. C. Elitzur and L.
Vaidman, “Quantum Mechanical Interaction-Free Measurements”, Found. Phys. 23, 987
(1993) [doi: 10.1007/BF00736012]. The solution in part (3) utilizing the quantum Zeno
effect is based on P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich,
“Interaction-Free Measurement”, Phys. Rev. Lett. 74, 4763 (1995).


