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3.1.B Entanglement and Bell. A source repeatedly generates two entangled qubits
in the state |Ω〉 ∈ C2 ⊗C2,

|Ω〉 = 1√
2
(|00〉+ |11〉).

One qubit is sent to Alice and one to Bob.

(1) When Alice measures her qubit in the standard Z basis, she instantaneously
knows whether Bob, who may be miles away, will observe outcome 0 or 1
when he measures his qubit in the Z basis. Explain why these correlations
cannot be used for instantaneous communication but they can be used for
generating cryptographic keys.

(2) Show that for any two operators A, B ∈ B(C2), we have

〈Ω| A⊗ B |Ω〉 = 1
2

tr AT B.

(3) Let A and B be two observables measured by Alice and Bob, respectively,

A = cos αZ + sin αX, and B = cos βZ + sin βX, (1)

where X and Z are the Pauli operators. Show that

〈Ω| A⊗ B |Ω〉 = cos(α− β).

What is the probability that the results registered by Alice and Bob upon
measuring these observables are identical?

Let A1, A2, B1 and B2 be the observables defined by using the angles α1 = π
2 , α2 = 0,

β1 = π
4 and β2 = 3π

4 (respectively) in Eq. (1). Alice and Bob perform a statistical test
(known as the CHSH test) in which Alice repeatedly measures either A1 or A2, and
Bob either B1 or B2. For each run they choose, randomly and independently from
each other, which observable to measure, and then check whether the following
conditions are satisfied:

A1 = B1, A1 = B2, A2 = B1, A2 6= B2. (2)

In each run they are able to check only one of the four conditions depending on the
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pair of observables they choose to measure.

(4) Show that their probability Ps of success (i.e. the asymptotic fraction of runs
in which they find that the outcomes agree with the conditions in Eq. (2)) is
given by Ps = cos2 π

8 .

The CHSH test described above can be performed using two devices, A and B,
with A being a “black box” of unknown design that has two settings A1 and A2,
and similarly for B with the settings being B1 and B2. At each run of the device A
or B for a given setting, an outcome of ±1 is generated. The probability of success
in any such CHSH test cannot exceed Ps = cos2 π

8 . The maximum value is achieved
only when the settings correspond to the measurements on qubits in state |Ω〉, as
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described above (modulo some simple relabelling). The test is rigid — there is no
other way to maximise the probability of success.

(5) An adversary, Eve, who manufactured, pre-programmed, and sold the two
devices to Alice and Bob, claims that for each run of the CHSH test she has
assigned numerical values ±1 to A1, A2, B1, and B2 so that the outcomes
are predetermined. Alice and Bob run the CHSH test using their unreliable
devices and obtain Ps ≈ 0.85. Is the claim from Eve true?

(6) Would the CHSH test be conclusive if Alice and Bob, in their “random”
choices of measurements (A1 or A2 for Alice, and B1 or B2 for Bob), relied
on random number generators supplied by their adversary Eve?

3.2.B Playing with conditional unitaries. The swap gate S on two qubits is
defined first on product vectors, S : |a〉 |b〉 7→ |b〉 |a〉 and then extended to sums of
products vectors by linearity.

(1) Show that the four Bell states 1√
2
(|00〉 ± |11〉), 1√

2
(|01〉 ± |10〉) are eigenvec-

tors of S which form the orthonormal basis in the Hilbert space associated
with two qubits. Which Bell states span the symmetric subspace (all eigen-
vectors of S with eigenvalue 1) and which the antisymmetric one (all eigen-
vectors of S with eigenvalue −1)? Can S have any other eigenvalues except
±1?

(2) Show that Π± = 1
2 (1 ± S) are two orthogonal projectors which form the An operator A is a projector iff it is

idempotent: A2 = A.decomposition of the identity and project on the symmetric and the anti-
symmetric subspaces. Decompose the state vector |a〉 |b〉 of two qubits into
symmetric and antisymmetric components.

(3) Consider the following quantum network composed of the two Hadamard
gates, one controlled-S operation (also known as the controlled-swap or the
Fredkin gate) and the measurement M in the computational basis,

|0〉 H H M

|a〉
S

|b〉

The state vectors |a〉 and |b〉 are normalised but not orthogonal to each other.
Step through the execution of this network, writing down quantum states
of the three qubits after each computational step. What are the probabilities
of observing 0 or 1 when the measurement M is performed?

(4) Explain why this quantum network implements projections into the sym-
metric and the antisymmetric subspaces of the two qubits.

(5) Two qubits are transmitted through a quantum channel which applies the
same, randomly chosen, unitary operation U to each of them. Show that
U ⊗U leaves the symmetric and antisymmetric subspaces invariant.

(6) Polarised photons are transmitted through an optical fibre. Due to the vari-
ation of the refractive index along the fibre the polarisation of each photon
is rotated by the same unknown angle. This makes communication based
on polarisation encoding unreliable. However, if you can prepare any polar-
isation state of two photons you can still use the channel and communicate
without any errors. How can this be achieved?
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3.3.A Simon’s algorithm. Let f : {0, 1}n 7→ {0, 1}n be a 2-to-1 function such Recall that the Hadamard transform is
defined as |x〉 7→ 1√

2n ∑y∈{0,1}n (−1)x·y |y〉 ,
where x, y ∈ {0, 1}n and the product
x · y = x1y1 + x2y2 + . . . + xnyn (mod 2)

that f (x⊕ s) = f (x), where s is a binary string of length n which is different from
zero (s 6= 0n) and x⊕ s is a bit-wise addition modulo 2. In the network below the
H operations denote the Hadamard transform on n qubits, M is a qubit by qubit
measurement in the standard computational basis and the f operation represents a
quantum evaluation of f ; |x〉 |y〉 7→ |x〉 |y⊕ f (x)〉.

n qubits in state |0〉⊗n

(1st register) H H M

n qubits in state |0〉⊗n

(2nd register)
f

(1) What is the state of the two registers right after the quantum function eval-
uation?

(2) The second register is measured qubit by qubit in the computational basis
and a binary string k ∈ {0, 1}n is registered. What is the state of the first
register after the measurement?

(3) Subsequently the Hadamard transform is performed on the first register, fol-
lowed by a measurement in the computational basis. The result is a binary
string, z. Show that z · s = 0.

(4) Suppose the function f is presented as an oracle. How many calls to the
oracle are required in order to find s? How does it compare with a clas-
sical algorithm for the same problem? Provide rough estimates, detailed
derivations are not required.

3.4.B Controlled unitaries revisited. Consider the following quantum network
composed of the two Hadamard gates, one controlled-U operation and the mea-
surement M in the computational basis,

|0〉 H H M

|u〉 U

The top horizontal line represents a qubit and the bottom one an auxiliary physical
system.

(1) Suppose |u〉 is an eigenvector of U, such that U |u〉 = eiα |u〉. Step through
the execution of this network, writing down quantum states of the qubit and
the auxiliary system after each computational step. What is the probability
for the qubit to be found in state |0〉?

Regardless the state of the auxiliary system, the probability P0 for the qubit to be
found in state |0〉, when the measurement M is performed, can be written as

P0 =
1
2
(1 + v cos φ) ,

where v and φ depend on U and on the initial state of the auxiliary system.

(2) Show that for an arbitrary pure state |u〉 of the auxiliary system the quanti-
ties v and φ are given by the relation veiφ = 〈u|U |u〉.
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(3) Suppose the auxiliary system is prepared in a mixed state described by the
density operator ρ,

ρ =
n

∑
k=1

pk |uk〉〈uk|

where vectors |uk〉 form an orthonormal basis, pk ≥ 0 and ∑n
k=1 pk = 1.

Show that v and φ are given by veiφ = tr(ρU).

(4) How would you modify the network in order to estimate tr(ρU)? How
would you estimate tr U?

3.5.B Deutsch’s algorithm and decoherence. Deutsch’s algorithm with an oracle
f : {0, 1} 7→ {0, 1}, is implemented by the following network

|0〉 H H M

|0〉 − |1〉 f |0〉 − |1〉

Suppose that in between the Hadamard gates the top qubit undergoes decoherence
by interacting with an environment in state |e〉,

|0〉 |e〉 7→ |0〉 |e0〉 , (3)
|1〉 |e〉 7→ |1〉 |e1〉 , (4)

where |e0〉 and |e1〉 are the new states of the environment which are normalised but
not necessarily orthogonal, 〈e0|e1〉 = v for some real v. How reliably can you tell
whether f is constant or balanced?


